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Abstract—Mobile crowdsourcing (MC) is a transformative
paradigm that engages a crowd of mobile users (i.e., workers) in
the act of collecting, analyzing, and disseminating information or
sharing their resources. To ensure quality of service, MC plat-
forms tend to recommend MC tasks to workers based on their
context information extracted from their interactions and smart-
phone sensors. This raises privacy concerns hard to address due to
the constrained resources on mobile devices. In this paper, we iden-
tify fundamental tradeoffs among three metrics—utility, privacy,
and efficiency—in an MC system and propose a flexible optimiza-
tion framework that can be adjusted to any desired tradeoff point
with joint efforts of MC platform and workers. Since the under-
lying optimization problems are NP-hard, we present efficient
approximation algorithms to solve them. Since worker statistics
are needed when tuning the optimization models, we use an effi-
cient aggregation approach to collecting worker feedbacks while
providing differential privacy guarantees. Both numerical evalua-
tions and performance analysis are conducted to demonstrate the
effectiveness and efficiency of the proposed framework.

Index Terms—Differential privacy, mobile crowdsourcing
(MC), privacy, task recommendation.

I. INTRODUCTION

M OBILE crowdsourcing (MC) is the combination of
crowdsourcing and mobile technologies that leverages

the advanced sensing, computing, and communication capabil-
ities of mobile devices to provide crowdsourcing services. In
MC, a crowd of mobile users are engaged to provide pervasive
and cost-effective services of data collecting, processing, and
computing. These mobile users have shifted from the traditional
role of service consumers to the new role of service providers,
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and they usually collect a small fee (or other forms of reward)
for providing services. The applications of MC have devel-
oped rapidly. Existing commercial MC applications include
traffic monitoring (e.g., Waze [1]), ride sharing (e.g., Uber [2]),
environmental monitoring (e.g., Stereopublic [3]), and wireless
coverage mapping (e.g., OpenSignal [4]). Nonetheless, MC is
still in its infancy, and there are many undergoing research
exploring applications such as epidemics monitoring and pre-
diction [5] and urban sensing [6]. Most of these applications
are Internet of Things (IoT) systems, where a huge number of
physical machines are connected over networks. MC can be
a helpful technique to achieve the high-scale interconnectiv-
ity and to ensure the security, reliability, and cost-efficiency in
these IoT systems.

In MC, a spatio-temporal task is outsourced to a group of
mobile users (i.e., workers) who perform the task within a dead-
line, and only workers under certain contexts are qualified for
the task. However, it is quite inefficient for workers to select
tasks by themselves when there are a huge number of crowd-
sourcing tasks, especially on a mobile device due to its limited
screen and keyboard. Hence, MC platforms must provide task
recommendation services which proactively push a task to qual-
ified workers. In current solutions, workers have to reveal their
exact contexts to MC platforms in order to receive personalized
task recommendation.

Depending on the application scenario, the context of a
worker can be defined with multiple dimensions, including
geographical (e.g., on a street), temporal (e.g., within hours),
activity (e.g., moving speed), and profile (e.g., gender) [7].
These contexts contain private and sensitive information that
may be used to uniquely identify an individual, reveal his/her
health status, or track his/her daily routines. However, MC plat-
forms are potentially untrustworthy in the sense that they may
be operated by various organizations and companies and may
also be compromised by malicious adversaries. Hence, allow-
ing MC platforms to learn exact contexts may put workers’
privacy at risk [8]. It is imperative to protect workers’ privacy
in order to enable large-scale deployments of MC applications.

An MC system has three components that may reveal pri-
vate worker information: offline statistics collection to learn
recommendation rules based on worker contexts and historical
task completion performance, online task selection to select the
most suitable tasks to a worker based on his current context,
and task completion for a worker to accept and perform a task,
and to return the result back. Each component exposes worker
contexts and raises privacy concerns in different ways. Privacy
protection of the last component can be provided through
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anonymous routing or pseudonyms such as Tor and is not our
focus in this paper. In this paper, we focus on the privacy issues
in the first two components, and propose a framework for pro-
tecting privacy of worker contexts while enabling effective task
recommendation in MC systems. The framework consists of
two main components that may operate in parallel: privacy-
aware online task selection which selects the best MC tasks for
workers based on their current contexts, and privacy-preserving
offline statistics collection which aggregates historical infor-
mation about worker contexts and task completion activities
needed for task selection while preserving privacy.

A. Privacy-Aware Online Task Selection

Current MC systems select tasks by collecting personal
data at a server. Workers have to reveal their exact context
information to the server in order to participate. To address
the privacy concerns of such server-only recommendation, an
alternative approach would be worker-only, where workers’
mobile devices keep their own personal context information
and perform recommendation. Indeed, it has been proposed for
personalization in mobile advertising systems [9]. The problem
with this approach is the huge computation and communica-
tion overhead for resource-constrained mobile devices. Thus,
some recent papers propose hybrid solutions that jointly con-
sider both sides to address privacy issues in mobile systems
[10]–[13]. For example, in [10], the server returns a super-
set of the results and let end users to filter useful information
by themselves. These solutions have a variety of optimization
goals, which motivates us to consider the fundamental tradeoffs
in these mobile systems.

In this paper, we formulate the task selection from an MC
server to a worker as an optimization problem that consid-
ers three metrics: 1) privacy that is related to the amount of
a worker’s context information shared with the MC server;
2) utility that represents the benefits of recommending the
tasks; and 3) efficiency that measures the communication and
computation overhead imposed on a worker’s mobile device
by recommending a certain number of tasks. We show in
Section III that these three metrics cannot be optimized simul-
taneously. Note that the aforementioned solutions only present
tradeoffs for certain instances: recommendation only at the
server side provides the best efficiency and utility at the cost
of privacy, while recommendation at the worker side provides
privacy guarantee and utility at the cost of efficiency. In con-
trast, we propose an optimization model that can be adjusted
to any desirable tradeoff level. In the proposed optimization
framework, a worker can decide how much information about
his/her context to share with the MC server. Based on this lim-
ited information, the MC server selects and sends a set of tasks
to the worker. The size of the task set is predefined by the
worker considering the associated communication and compu-
tation overheads. After the worker receives the task set, he/she
picks and completes the best task based on his private infor-
mation. The most challenging part in the whole process is to
select the task set sent by the MC server that maximizes the total
expected utility of the MC server given the constraints on pri-
vacy and efficiency. There are also other types of tradeoffs we

can consider, such as jointly optimizing utility and efficiency
given a constraint on privacy. Since the priorities of privacy
and efficiency can be arbitrarily selected by the worker, the
framework is quite flexible and can be used in different MC
systems.

B. Privacy-Preserving Offline Statistics Collection

Recommended tasks are chosen based on statistics including
both historical performance of workers and the distribution of
their contexts. These statistics can be collected offline and are
used to calibrate the online task selection component. However,
extracting these statistics often poses a privacy challenge: work-
ers may be unwilling to reveal the required information such
as their exact contexts and tasks that they have completed suc-
cessfully. Therefore, we need to provide a privacy-preserving
solution that can obtain these statistics from distributed worker
data. Some previous works propose to address privacy in
statistical queries by anonymizing data; however, there are pos-
sibilities that data owners may be de-anonymized with auxiliary
information [14], [15]. Differential privacy adds noise in the
querying results of statistical databases so that even with aux-
iliary information, one cannot infer the presence or absence of
individuals. In this paper, we use a privacy-preserving statistics
collection approach to reliably computing the required statistics
from a dynamic set of workers who are potentially malicious.
Our solution is based on a distributed statistics collection pro-
tocol provided in [16], which uses a semi-honest third party to
add blind differentially private noise to distributed worker data.

The main contributions of this paper are as follows.

1) We identify specific privacy challenges of task recom-
mendation in MC systems, and then propose a framework
that protects worker context privacy.

2) We develop an optimization model for task selection
that explores fundamental tradeoffs among three design
metrics—privacy, utility, and efficiency—in MC systems,
and then present efficient approximation algorithms to
solve it.

3) We use an efficient statistics collection approach to pre-
serving differential privacy in a distributed setting with
tolerance of malicious or dynamic workers.

4) We conduct both numerical evaluations and performance
analysis to demonstrate the effectiveness and efficiency of
our proposed framework.

This paper is organized as follows. We first present our
framework in Section II. Then, we represent the task selection
process as a constrained optimization problem in Section III.
Section IV gives an approximation algorithm to solve the opti-
mization problem. A privacy-preserving approach for statistics
collection is presented in Section V. We discuss the experimen-
tal results and analyze the system overhead in Section VI and
Section VII, respectively. Section VIII summarizes the related
work. Finally, we conclude this paper in Section IX.

II. PROPOSED FRAMEWORK

In this section, we describe the basic system model for task
recommendation in MC systems and design goals.
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Fig. 1. Basic system model for task recommendation in MC.

A. System Model

Fig. 1 shows the basic model of the proposed framework
consisting of the following two components.

1) Statistics collection: In this component, the server collects
various statistics from workers periodically in the back-
ground. A semi-honest third party (to be elaborated later
in Section V) is employed to protect the private context
information of participating workers.

2) Task selection: In this component, based on the statis-
tics collected in the statistics collection component and
worker’s current context, the server selects and delivers
a set of tasks to the worker. Note that we allow workers
to decide how much private information they are willing
to share with the server. The server selects a set of tasks,
where the set size is constrained by a bounded commu-
nication overhead, based on this limited information and
sends them to the worker. The worker1 then chooses the
most relevant one to complete based on all his private
information and returns the answer to task requesters.

B. Privacy Guarantees

Our framework can protect worker privacy in both online task
selection and offline statistics collection. Note that task selec-
tion and statistics collection use private worker contexts in dif-
ferent ways, and therefore require different privacy-preserving
techniques.

In task selection, a single worker’s current context is used,
and we ensure worker privacy through limited information dis-
closure as used in many mobile systems [12], [17], [18]. We
allow the worker to share a generalized context with the server
rather than his exact context. The generalization of worker con-
text is done according to a predefined hierarchy. Quantifiable
contexts such as location can be simply divided into different
intervals based on their values. For instance, location infor-
mation represented by the latitude and longitude with a total
of 6 decimal digits can be generalized by keeping 6− a deci-
mal digits for level-a generalization. A worker can also choose
different (i.e., adaptive) levels of generalization for different
intervals of contexts with existing approaches [10]. If a con-
text information is not quantifiable, the generalization rule can
be predefined. For example, user activity can be generalized

1For brevity, we use “he” to refer to the worker without meaning any
distinctions about the worker’s gender in the remainder of this paper.

Fig. 2. Generalization of user activity.

based on a tree taxonomy as shown in Fig. 2. The predefined
taxonomy are stored at the mobile device of workers, and a
worker can reveal that he is moving at low speed rather than
he is shopping. Interested readers may refer to [19] for details
about different generalization methods.

In statistics collection, historical context and task comple-
tion information from workers is used. Our framework allows
workers to choose whether to participate in statistics collection,
and protect the privacy of participating workers. We consider
the privacy risk for participating workers from two aspects. We
first guarantee that no other party, except the worker himself,
would know his private information during statistics collection,
which can be achieved through data encryption [20]–[22].

Moreover, we also consider privacy leakage that cannot be
solved by data encryption. A potential privacy leakage is due
to multiple runs of statistics collection when a worker does
not participate in all runs, e.g., because he has reached home.
Hence, we should protect every worker from an adversary
(with arbitrary background knowledge) who tries to trace or
de-anonymize a user between several runs of the statistics col-
lection approach. To this end, we adopt the privacy notion of
(ε, δ)-differential privacy [23], which ensures that the result of
our approach does not significantly change with the presence or
absence of a single worker. Formally speaking,

Definition 1: A statistics collection algorithm F satisfies
(ε, δ)-differential privacy if for any two datasets D1 and D2

which differ on at most one element, and ∀O ⊆ range(F), the
following inequality holds:

Pr[F(D1) ∈ O] ≤ exp(ε)× Pr[F(D2) ∈ O] + δ. (1)

In the definition, the parameter ε bounds the ratio of prob-
ability distributions of two datasets differing on at most one
element, while δ permits us to relax the relative shift at events
that are not likely to happen, bounding the probability of a
privacy breach. In order to achieve (ε, δ)-differential privacy,
the raw output of statistics computation algorithm F is sani-
tized by adding noise to it. The process of noise addition will
be described in detail in Section V. If the outputs of statistics
collection module achieve (ε, δ)-differential privacy, the fact
whether a worker provides information or not to the recommen-
dation server will not change the server’s knowledge on him.
Therefore, an adversary with arbitrary background knowledge
cannot trace or deanonymize a worker from multiple runs of the
statistics collection approach.

C. Design Goals

For task selection, we aim to provide good privacy, utility,
and efficiency.
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1) Privacy: Worker contexts are needed for task recom-
mendation, which may be leveraged by the server to
uniquely identify an individual worker. To reduce the
risk of being identified, the worker limits the informa-
tion shared with the server. Instead of providing an exact
context, the worker provides a generalized context which
obfuscates privacy-sensitive information such as location
and activity.

2) Utility: It is an abstract term which represents the value of
a set of recommended tasks. It should be optimized during
the task recommendation process. In this paper, the utility
of the server is defined as the expected revenue (or com-
mission) of the recommended tasks, while the utility of
the worker is defined as the payment he would obtain by
completing the recommended tasks. The utility for both
stakeholders is related to the payment of the task that is
selected and completed successfully by the worker.

3) Efficiency: When a worker receives a set of recommended
tasks, he tries to select the best task from the set. A larger
set takes more time to select from, which contradicts the
intention of recommendation. Thus, the efficiency of task
recommendation is directly related to the set size. The
recommendation system should recommend a reasonable
number of tasks at a time to ensure the efficiency of task
selection by the worker.

Privacy, robustness, and scalability are also guaranteed for
statistics collection, which will be discussed in Section V.

III. OPTIMIZATION MODEL FOR TASK SELECTION

In this section, we investigate fundamental tradeoffs among
three design goals and formulate two optimization problems to
model them in the task selection component.

A. Definition and Notations

Before proceeding further, we give the definition and nota-
tions used in the rest of this paper as follows.

Definition 2: Contexts and tasks
1) Denote by C = {c : c = 1, 2, . . . , |C|} the set of all exact

contexts. Each worker has an exact context c.
2) Denote by Ĉ = {ĉ : ĉ = 1, 2, . . . , |Ĉ|} the set of all gen-

eralized contexts. Each exact context is mapped into
a generalized context, and a generalized context may
correspond to multiple detailed contexts.

3) Denote by T = {t : t = 1, 2, . . . , |T |} the set of all tasks.
For simplicity of notations, we treat tasks that have the
same requirements for worker contexts and the same pay-
ment as one task. Each task may have multiple instances.
The payment for successfully completing a task t is
denoted as ρt.

Definition 3: Both workers and the MC platform can earn
some money when tasks are completed successfully (i.e.,
answers approved by task requesters). We use complete-and-
approve rate (CAR) to characterize the ratio of rewarded tasks,
which can be calculated as N1, the total number of work-
ers with context c who have successfully completed task t,

divided by N2, the total number of workers with context c, i.e.,
CAR(t|c) = N1/N2.

B. Tradeoffs Among Utility, Privacy, and Efficiency

The optimization model of task selection specifies how to
choose tasks based on limited information about a worker.
There are three conflicting design goals in this model: utility,
privacy, and efficiency. These three goals cannot be optimized
simultaneously. First, suppose that privacy and efficiency are
optimized, which means that the worker provides no context
about himself to the system and expects to receive a single task
tailored for him. In this case, as long as the utility of tasks
varies across different contexts, it is impossible for the recom-
mendation server to choose a task that is of high utility for the
worker. Second, consider the case that efficiency and utility are
optimized. In order to find a task that has the highest utility
for the worker, the recommendation server needs to know the
exact worker context, compromising his privacy. Finally, if we
want to ensure the optimality of utility and privacy, the rec-
ommendation server needs to recommend, without any prior
knowledge of worker context, a set of tasks within which the
worker can find one to maximize his utility. In this case, the
efficiency becomes suboptimal since the recommended task set
would be very large. If any of the above three goals is dropped,
it is trivial to optimize the other two. Therefore, in practice, we
have to find a good tradeoff among these three goals.

C. Optimization Problem Formulation

In our framework, the worker first decides the amount of
information about his private context to share with the server.
Based on this limited information, the server selects L tasks
T ⊂ T and sends them to the worker. Here, L determines the
efficiency. Then, the worker selects a task from the recom-
mended L tasks, completes it, and returns the result back to the
sever or task requester. Therefore, the task is selected jointly by
the server and the worker in our framework.

As mentioned before, there are three conflicting goals.
Although these goals cannot be optimized simultaneously, there
are several candidate objective functions that optimizes the
goals from different aspects. In the following, we choose an
optimization objective function representing the utility and
model the other two goals as constraints. In other words, we
optimize the utility while allowing the worker to determine
the efficiency and privacy requirements. Alternative objective
functions are also discussed.

1) Computation at the Worker Side: Given a set of rec-
ommended tasks T , the worker selects one to complete. The
behavior of the worker is supposed to be rational. In other
words, the worker with exact context c would select the task
that maximizes his own revenue, which can be modeled as

t∗ = argmax
t∈T

ρt · CAR(t|c). (2)

The computation of CAR(t|c) will be described later in this
section.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on June 28,2021 at 15:15:35 UTC from IEEE Xplore.  Restrictions apply. 



GONG et al.: OPTIMAL TASK RECOMMENDATION FOR MC WITH PRIVACY CONTROL 749

2) Computation at the Server Side: Since the worker knows
his own context, he can easily make the selection by maximiz-
ing his revenue. This is not true for the server as it can only
select tasks based on the limited information provided by the
worker. To increase the relevance between recommended tasks
and the worker, the server needs to recommend multiple tasks
at the same time.

Assume that the server already has prior knowledge on the
context-dependent click-and-approve rates, CAR(t|c), and the
probability distribution over contexts. From the perspective of
the server, its utility (i.e., revenue) depends on the task that the
worker chooses, and we use the expected revenue of the set of
tasks to quantify it. Since the server does not know the exact
context c of the worker, it considers the probability of each
of the exact contexts that generalize into ĉ and calculates the
expected revenue R of the set of tasks T as follows:

E[R(T |ĉ)] =
∑

c:c→ĉ

Pr[c|ĉ] · α ·max
t∈T

ρt · CAR(t|c) (3)

where α is the portion of revenue that the platform can obtain
for each successful transaction. Let L denote the size of the
task set. The server needs to select L tasks that maximize the
expected revenue given a generalized context ĉ, i.e.,

T ∗ = argmax
T⊆T :|T |=L

E[R(T |ĉ)]. (4)

3) Alternative Objectives: The above optimization model
contains the extreme cases when task selection is taken solely at
the server side (L = 1) or solely at the worker side (L = |T |).
For the former case, if the server recommends a single task
based on a very generalized context provided by the worker,
it is likely that the recommendation has a low utility. For the
latter case, the server sends all the available tasks to the worker.
The selection becomes inefficient, and the recommendation ser-
vice is meaningless. Hence, the parameter L should be selected
cautiously.

Instead of setting L as a predefined parameter, we can also
include it as one of the design variables. This can be done
by substituting E[R(T |ĉ)]− λ · L for the original objective
E[R(T |ĉ)] in (4), where λ is the weight of the efficiency metric
L in the total objective function. As a result, the server selects
a set of tasks that maximizes the new objective, i.e.,

T ∗ = argmax
T⊆T :|T |=L

E[R(T |ĉ)]− λ · L. (5)

In this way, the efficiency and the utility can be optimized
jointly.

There are other options to model the utility as well. For
example, we can incorporate the cost of a task into the objec-
tive such as time or other resources needed for completing a
task. In this case, the selection process among a set of tasks
for the worker becomes more complicated. A possible formula-
tion might be maxt∈T (ρt − costt,c) · CAR(t|c), where costt,c
denotes the cost to complete task t by workers with context c.
In addition, there might be a reservation wage wr [24] below
which the worker would not pick the task. Considering this,
the process of task selection for a worker can be modeled as
maxt∈T (ρt − costt,c) · 1{ρt−costt,c≥wr} · CAR(t|c).

IV. SOLUTION ALGORITHMS

In this section, we propose efficient solution algorithms for
our optimization problem. In the following, we first consider
the specific scenario which optimizes the objective of utility as
in (3) and then discuss how to jointly optimize utility and effi-
ciency as in (5). We mainly focus on computation at the server
side, because the optimization problem at the worker side can
be efficiently solved.

A. Approximation Algorithm for Optimizing the Utility

Both the server and the worker need to optimize their own
objectives by solving (4) and (2), respectively. It is trivial for
the worker to select the task from a set of L tasks, because
L is usually designed to be a small number, and the opti-
mization problem (2) can be directly solved efficiently. On the
other hand, the server needs to select L tasks from the entire
task space T according to (4). Directly solving this problem
is computational intensive or infeasible. Actually, we have the
following fact.

Proposition 1: Given a generalized context ĉ, it is NP-hard
to find a set of tasks T ∗ such that

T ∗ = argmax
T⊆T :|T |=L

∑

c:c→ĉ

Pr[c|ĉ] · α ·max
t∈T

ρt · CAR(t|c). (6)

Proof: We can prove the NP-hardness by a reduction from
the NP-hard maximum coverage problem. Details of this proof
can be found in our technical report at [25]. �

Since the problem (6) is NP-hard, we design a greedy
algorithm for the server as shown in Algorithm 1.

Algorithm 1. Greedy Algorithm for Profit Maximization

Input: T , ĉ, L
Output: T

// initialization
1: T ← ∅;
2: repeat
3: t← argmaxt∈T E[R(T ∪ t|ĉ)]− E[R(T|ĉ)];
4: T ← T ∪ {t};
5: untill |T | = L
6: return T

By repeatedly choosing a task that maximizes the utility
improvement, the greedy algorithm can be proved to approx-
imate the optimal value within 1− 1/e, where e is the Euler’s
number (approximately 2.71828). Note that in [26], a greedy
algorithm that solves the maximum coverage problem provides
the same approximation ratio. However in their problem, the set
either fully includes the element or not at all, while in our prob-
lem a task can partially matches the context, which complicates
the problem and requires additional analysis. The proof of this
approximation ratio for our approximation algorithm is given
below.

Proposition 2: The greedy algorithm approximates the opti-
mal solution within a factor of 1− 1/e.
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Proof: Define a marginal utility function of adding set T ′

to T as follows:

f(T, T ′) = E[R(T ∪ T ′|ĉ)]− E[R(T |ĉ)].

The function f(T, T ′) is submodular in the sense that
f(T1, T

′) > f(T2, T
′) for all sets T1 ⊂ T2. For l = 1, 2, . . . , L,

let Tl = {t1, t2, . . . , tl} be the greedy solution constructed up
to the end of the lth stage; thus TL is the final greedy solution
returned. Similarly, let T ∗

L = {t∗1, t∗2, . . . , t∗L} be the optimal
solution of any fixed order and T ∗

l = {t∗1, t∗2, . . . , t∗l } represents
the first l tasks. Denote by m(l) =

∑l
i=1 mi the utility of Tl,

where ml = f(tl, Tl−1) is the marginal utility by adding tl to
Tl−1. Similarly, denote by m∗(l) =

∑l
i=1 m

∗
i the utility of T ∗

l ,
where m∗

l = f(t∗l , T
∗
l−1). Our aim is to prove

m(L) ≥ m∗(L) · (1− 1/e). (7)

To this end, we first prove

ml ≥ (m∗(L)−m(l − 1))/L∀l ∈ [1, L]. (8)

The marginal utility of adding set T ∗
L to set Tl−1 is f(Tl−1,

T ∗
L), which equals

∑l
i=1 f(Tl−1 ∪ T ∗

i−1, t
∗
i ). By the aver-

aging argument, there exists an i such that f(Tl−1 ∪
T ∗
i−1, t

∗
i })≥ (m∗(L)−m(l−1))/L. We can then obtain ml =

f(Tl−1, tl)≥ f(Tl−1, t
∗
i )≥(m∗(L)−m(l − 1))/L, where the

first inequality comes from how we choose tl, and the second
comes from submodularity. �

We can then prove m(l) ≥ (1− (1− 1/L)l)m∗(L) ∀l ∈
[1, L] by induction. When l = 1, the result holds: m(l) =
m1 ≥ m∗(L)/L = (1− (1− 1/L)l)m∗(L) from (8). Suppose
the inequality holds for l, i.e., m(l) ≥ (1− (1− 1/L)l)m∗(L),
we have

m(l + 1) = m(l) +ml+1 ≥ m(l) + (m∗(L)−m(l))/L

= m∗(L)/L+m(l)(1− 1/L)

≥ m∗(L)/L+m∗(L)(1− (1− 1/L)l)(1− 1/L)

= (1− (1− 1/L)l+1)m∗(L).

Let l = L in the above inequality, we have m(L) ≥ (1− (1−
1/L)L)m∗(L) ≥ (1− 1/e)m∗(L), which completes the proof.

B. Approximation Algorithm for Jointly Optimizing the Utility
and Efficiency

As mentioned before, there are alternative objectives for the
optimization problem. We now discuss how the server can
jointly optimize the utility and efficiency in (5). As we show
below, this is also an NP-hard problem.

Proposition 3: Given a generalized context ĉ, it is NP-hard
to find a set of tasks T ∗, such that

T ∗ = argmax
T⊆T :|T |=L

∑

c:c→ĉ

Pr[c|ĉ] · α ·max
t∈T

ρt · CAR(t|c)− λ · L.

(9)

Proof: We can prove the NP-hardness of this problem by
a reduction from Problem 1. Details of this proof can be found
in our technical report at [25]. �

Below, we describe Algorithm 2 that approximately solves
the above optimization problem (9) in polynomial time
and give the analysis of approximation ratio in Proposition 4.

Algorithm 2. Greedy Algorithm for Jointly Utility and
Efficiency Optimization

Input: T , ĉ, λ, Lmax

Output: T
// initialization
1: L← 1, θ ← 0, T ← ∅;
2: while L ≤ Lmax do
3: Q← ∅;
4: repeat
5: t← argmaxt∈T E[R(Q ∪ t|ĉ)]− E[R(Q|ĉ)];
6: Q← Q ∪ {t};
7: until |Q| = L
8: if θ ≤ E[R(Q|ĉ)]− λ · L then
9: θ ← E[R(Q|ĉ)]− λ · L;

10: T ← Q;
11: end if
12: L← L+ 1;
13: end while
14: return T

In Algorithm 2, Lmax denotes the maximum number of recom-
mended tasks chosen by the worker beforehand.

Proposition 4: The greedy algorithm approximates the opti-
mal solution within a factor of 1− 1/e.

Proof: Following the notations in the proof of
Proposition 2, let m(L) and m∗(L) denote the objective
function value for the greedy solution at a fixed L and
the objective function value for the optimal solution at a
fixed L, respectively. Denote by mG and m∗

G the objective
function value over all L for the greedy solution obtained
by Algorithm 2 and the objective function value over all L
for the optimal solution, respectively. Our aim is to prove
mG ≥ m∗

G · (1− 1/e).
Suppose that the optimal objective function value m∗

G is
reached when L = L̃, we have m∗(L̃) = m∗

G. Now, from (7),
m(L̃) ≥ m∗(L̃) · (1− 1/e) = m∗

G · (1− 1/e). Since mG ≥
m(L) ∀L = 1, . . . , Lmax, we have mG ≥ mL̃ ≥ m∗

G · (1−
1/e), which completes the proof. �

V. PRIVACY-PRESERVING STATISTICS COLLECTION

In the previous sections, we have assumed that the server has
prior information about worker statistics in the task selection
component such as Pr[c|ĉ] and CAR(t|c). In this section, we
describe how to obtain these statistics with privacy, robustness,
and scalability guarantees.

A. Problem Overview

There are three parties in the offline statistics collection com-
ponent: the MC server, workers, and a semi-honest third party
(proxy). The server makes statistics queries and collects the
results. Workers locally store their historical contexts as well
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as performance records, and answer queries. The proxy plays a
mediation role between the server and the workers in order to
protect worker privacy.

1) Threat Model and Assumptions: The server is assumed
to be potentially malicious in the sense that it intends to vio-
late worker privacy. The server may attempt to use the statistics
collection protocol to learn private information about work-
ers, or deploy its own workers and manipulate their answers.
Moreover, the server may also publish its collected worker
statistics. Workers are also assumed to be potentially malicious
in the sense that they may distort the final statistics learned
by the server by submitting false or illegitimate answers. The
proxy is assumed to be semi-honest or “honest-but-curious,”
which means it will faithfully follow the specified protocol,
but may attempt to exploit additional information learned in
executing the protocol. The proxy does not collude with other
parties.

We assume that workers have correct public keys for the
server and the proxy, that the server and the proxy have cor-
rect public keys for each other, and that all the corresponding
private keys are securely kept. We also assume secure, reliable,
and authenticated communication channels among the server,
the proxy, and workers. Workers are assumed to be dynamic,
which means that they may quit in the middle of the statis-
tics collection process due to unstable wireless connection or
power saving. Moreover, the computation and communication
resources of worker devices are assumed to be limited.

In practice, as suggested in [16], the server may pay the
proxy to execute the statistics collection protocol. Such a proxy
has been used in previous papers [27], [28] and the rela-
tionship between the proxy and the MC server pre-exists in
industry today which usually does not lead to collusion. For
example, pharmaceutical companies pay an independent orga-
nization who evaluates the safety, quality, or performance of
their products and may give unfavorable results against the
pharmaceutical companies. Therefore, we believe that it is
reasonable to have such a semi-honest proxy in our approach.

B. Computation of Worker Statistics Based on Counting

Based on a differentially private counting procedure, the
statistics collection protocol gathers responses from work-
ers and transforms the responses into statistics Pr[c|ĉ] and
CAR(t|c). We first describe how these statistics can be com-
puted based on a counting procedure. We will give the details
of the counting procedure in Section V-C.

1) Calculating Pr[c|ĉ]: The statistic Pr[c|ĉ] is calculated as
the number of workers with context c divided by the number
of workers with generalized context ĉ. Hence, the MC server
should count the numbers of workers with context c and gen-
eralized context ĉ, respectively. To this end, the MC server
constructs a statistics query which asks two questions: (1) “Is
your private context c?” and (2) “Is your generalized context ĉ?”
Both questions expect binary answers “yes” (represented by 1)
or “no” (represented by 0). The answer from each worker k is a
vector (b1k, b

2
k) that consists of two bits, each corresponding to a

question. An example of the answer vector is shown in Fig. 3(a).
Therefore, given a privacy-preserving counting procedure, we

Fig. 3. (a) Illustration of the answer vector for worker k. (b) Aggregation
process of answer vectors from M workers.

can aggregate answers to these two questions from workers, and
calculate Pr[c|ĉ] in a privacy-preserving manner.

2) Calculating CAR(t|c): The statistic CAR(t|c), as
defined in Section III-A, is calculated as the total number of
workers with context c who have completed task t divided by
the total number of workers with context c. The MC server
also generates a query that consists of two questions: (1) “Is
your context c?” and (2) “If your context is c, have you suc-
cessfully completed task t?” The answer to these two questions
is contained in a two-bit vector as well. If the context of the
worker is not c, the answer of the worker would be [0, 0]; if
the context of the worker is c, and he has successfully com-
pleted the task, his answer would be [1, 1]; if the context of
the worker is c but he does not complete the task, his answer
would be [0, 1]. Here, the first bit of the answer vector indi-
cates that the worker satisfies both context c and completion
of task t, while the second bit indicates whether the worker’s
context is c as shown in Fig. 3(a). Similarly, we can compute
CAR(t|c) using a counting procedure over answers to these
questions from workers.

In practice, the MC server first sets M and ε, where M indi-
cates the number of workers that need to be queried and ε is the
privacy budget that controls the amount of noise. The queries
and the parameters M and ε are then broadcasted to workers,
whose answers will be added bit by bit as shown in Fig. 3(b) by
a privacy-preserving counting procedure explained below.

C. Distributed Differentially Private Counting Procedure

We now describe our differentially private counting proce-
dure which is the key part of the statistical collection approach.
The counting procedure takes answers from workers as the
input data, and outputs a noisy sum with differential privacy
guarantees, i.e., a sum that does not significant change with the
presence or absence of a single worker. Since in our distributed
setting, the data are owned by workers themselves, it is nontriv-
ial to add the differential noise to the distributed data. There are
a few works which provide differential privacy in a distributed
setting [23], [29], [30]. However, they either have a high com-
putation cost on each user [23] or requires users to be online
during the whole computation process [29], [30], rendering
them impractical for a large-scale setting as our scenario.

To ensure the scalability of our approach, we adapt the pro-
tocol in [16], which employs a semi-honest proxy to achieve
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differential privacy under distributed setting for a different
application scenario. The proxy aggregates answers from work-
ers and adds noise to the sum; however, it is unable to learn the
value of answers or their sum. Moreover, the proxy adds noise
“blindly” such that it does not know the value of the noise. In
this way, the proxy is unable to recover the accurate count by
subtracting the noise from the published final statistics.

For ease of presentation, we call each encrypted binary bit
as a coin, and call a set of coins as a bucket. We summarize
the counting protocol as follows. Step 1) The server formulates
a query request for a specific statistics and specifies the num-
ber of queried workers M and the privacy parameter ε for this
query. Step 2) The proxy sends the query to qualified work-
ers. Step 3) After a worker receives the query, he constructs
an answer vector, encrypts his answer bits with the public key
of the MC server and sends the ciphertexts (i.e., coins) to the
proxy. Step 4) The proxy aggregates the coins into buckets and
adds blind binomial noise N based on ε in each bucket. Step
5) The proxy forwards the answers to the MC server. Step 6)
The MC server decrypts each encrypted binary answer with
its private key, sums up the decrypted values in each bucket,
and subtracts N/2 from the sum in order to cancel the added
noise. Since the MC server cannot tell who constructs encrypted
answers, the identities of workers are anonymized. For detailed
steps of the protocol, readers may refer to [16], which has
similar information flow as our protocol.

D. Noise Addition

The amount of noise required to achieve (ε, δ)-differential
privacy is calculated in [23] and described below.

Let N be the number of unbiased coins added in a bucket,
i.e., the amount of binomial noise. The statistics collection algo-
rithm achieves (ε, δ)-differential privacy if N ≥ 64 ln(2/δ)/ε2,
where parameters δ and M are selected by the server. Suppose
that any query of each person is sensitive, then δ > 1/M indi-
cates the disclosure of at least one person’s privacy. Therefore,
δ is selected to be smaller than 1/M . With this constraint, the
amount of noise added should satisfy

N ≥ 64 ln(2M)

ε2
. (10)

The semi-trusted proxy should collaborate with workers to
generate unbiased and blind coins so that neither party can
determine or know the amount of added noise. To this end,
coins are first generated by workers and then “flipped” by the
proxy. Coin-flipping can be realized by the XOR-homomorphic
encryption, where the ciphertext of the XOR of two binary val-
ues is equal to the product of their ciphertexts, i.e., for any
b, b′ ∈ {0, 1}, we have e(b) · e(b′) = e (b⊕ b′), where e(·) is
the encryption operator. With this homomorphic property, two
parties can collaboratively generate an encrypted value of either
0 or 1 while no single party can know or control the final
results. As long as one of the two parties is unbiased, the
final results would be unbiased. We use the Goldwasser–Micali
(GM) cryptosystem [31] for coin generation, which has the
desired XOR-homomorphic property, and is also very efficient
for encrypting binary values.

E. Properties of the Statistics Collection Approach

The aforementioned statistics collection approach provides
the following three properties. 1) Privacy: our approach ensures
differential privacy for all workers. Whenever a worker partic-
ipates in the statistics collection procedure, he reveals some
information about himself. Such kind of privacy loss is quan-
tified by the privacy budget [23], [32]. The privacy loss is
accumulated across queries until it surpasses the worker’s pri-
vacy budget. Then the worker stops contributing any data in the
statistics collection procedure. This provides the best privacy
for the worker. 2) Scalability: by scalability, we refer to low per-
worker computation cost and resistance to worker dynamics. In
our approach, the cost per worker is O(1). Hence, even when
the number of workers is large, the cost for individual worker
does not change much. Moreover, in our approach, workers
only need to submit answers once and no further communi-
cation is required after that. Therefore, our approach allows
workers to leave after they submit their answers. This is impor-
tant when the number of workers is large because it is difficult
to keep all workers online during the whole statistics collection
process. 3) Robustness: with the GM encryption, we are able to
bound the error brought by malicious workers because a mali-
cious worker would be unable to distort the final sum by more
than 1. The result submitted by each user can only be 0 or 1
and other illegitimate values can be easily detected by check-
ing the Jacobi symbols of ciphertexts at the proxy. Suppose
1% of workers are malicious, the error introduced by malicious
worker would be less than 1%.

VI. PERFORMANCE EVALUATION

To evaluate the performance of the proposed optimization
algorithms, we generate a synthetic dataset to simulate the
statistics Pr(c) and CAR(t|c). Without loss of generality, we
assume that the frequency of worker contexts is uniformly dis-
tributed. The dataset includes 2048 exact contexts and 10 000
different tasks. The detailed contexts can be generalized at
four different levels. There are 512 level-1 generalized con-
texts denoted as “G1,” 128 level-2 generalized contexts denoted
as “G2,” 8 level-3 generalized contexts denoted as “G3,” and
2 level-4 generalized contexts denoted as “G4.” The statis-
tic CAR(t|c) is generated in a way such that the closer the
two exact contexts are, the more similar the distributions of
CAR(t|c) would be. The CAR(t|c) of a task t for workers
with the same exact context c follows a uniform distribution.
The payments of tasks are set as a random value between 0 and
10, and the ratio of commission α is chosen to be 0.1.

First, we test the effectiveness of the task recommendation
model. To this end, we compare our proposed (Algorithm 1)
with two baseline algorithms, “baseline1” and “baseline2.” The
first baseline algorithm uses the exact worker context as the
input. With the exact worker context, the algorithm directly
chooses the task that maximizes the revenue gained by the MC
platform. Worker privacy is compromised in this algorithm to
trade for utility and efficiency. On the contrary, in the second
baseline algorithm, no context information is used, and there-
fore worker privacy is maximized. This algorithm does not
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Fig. 4. Effect of generalization level on the average revenue in Problem (4).

consider the difference of worker contexts and recommends
tasks that have highest payments.

Fig. 4 shows the expected revenue of the MC platform by
adjusting the size of the recommended task set L. We run the
experiments using six different algorithms, including two base-
line algorithms and Algorithm 1 with four different levels of
generalized contexts. Intuitively, the two baseline algorithms
serve as a upper bound and a lower bound of other algorithms,
respectively, which is clearly shown in this figure. The expected
revenue of Algorithm 1 increases when more context informa-
tion is used. For a specific level of generalization, the expected
revenue increases with L. For example, when the generalization
level is 3 (which corresponds to “G3” in this figure), the revenue
increases from 0.986 to 0.991 as L increases from 2 to 10. Note
that the performances of the two baseline algorithms do not
change with L because they always select the task that max-
imizes the expected revenue regardless of L. We can see that
when privacy level increases from G1 to G4, the decrease in the
average revenue is not significant; this shows the effectiveness
of our privacy preserving approach.

Second, we evaluate the performance of the proposed
approximation algorithms. Due to the NP-hardness of the
original optimization problem, the optimal solution becomes
intractable in practice when either L or the task space is large.
Therefore, we use a reduced size of dataset for this exper-
iment (i.e., 100 tasks and L = 1, 2, 3). Fig. 5 compares the
performances of Algorithm 1 and the optimal algorithm. We
see that there is little difference between the two algorithms
for L = 1, 2, 3 and |T | = 100. The difference between the two
algorithms may grow as L becomes larger, but we have proved
in previous sections that our approximation algorithm has an
approximation ratio of 1− 1/e.

Third, we show the performance of Algorithm 2, which
jointly optimizes utility and efficiency. Fig. 6 plots the weighted
sum of utility and efficiency with the weight coefficient λ rang-
ing from 0.005 to 0.1. For each λ, the x-axis represents the
level of context generalization, and the y-axis represents the the
weighted sum of utility and efficiency. Same as what we get
from Fig. 4, the weighted sum decreases as the level of general-
ization increases, which shows a clear tradeoff between utility
and privacy. With the increase of λ, the optimized weighted
sum decreases. This is reasonable because it is shown in (5)

Fig. 5. Performance of approximation Algorithm 1.

Fig. 6. Effect of the generalization level and the weight for efficiency in
Problem (5).

that for the same list of recommended tasks, the weighted
sum decreases with the increase of λ. As a result, the optimal
weighted sum is expected to decrease as well.

VII. SYSTEM OVERHEAD

In this section, we analyze the system overhead of the pro-
posed framework, including both task selection and statistics
collection components.

We list the estimated running time for the task selection com-
ponent in Table I. Since the time for the optimal algorithm
grows exponentially as L grows, we only run this algorithm
at L = 2 or 3 with a small dataset where the number of tasks
is 100. We can see that the time to get an optimal solution
grows rapidly with L, whereas the time for the proposed greedy
algorithm is linear with respect to L.

In the following, we analyze the computation, storage and
communication overhead for statistics collection. First, we ana-
lyze the computation overhead for the GM cryptosystem. With
a 1024-bit key length, a smartphone running Android 2.2 with
1-GHz processor can execute more than 800 encryptions within
1 s [16]. Since workers only need to execute the encryption
process once for each query request, the computation cost is
negligible for them. The proxy is implemented with Apache
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TABLE I
RUNNING TIME (IN UNIT OF SECONDS) OF RECOMMENDING L TASKS FROM A SET OF 100 TASKS (L = 2 OR 3)

Tomcat 6.0.33, which can execute more than 15 000 GM
encryptions, or 123 000 homomorphic XORs/s, and the server
is implemented with Java source code, which can execute more
than 6000 GM decryptions/s. Consider a normal setting where
there are 5000 workers with 100 different exact contexts which
generalize to the same generalized context, and there are 90
tasks relevant to this generalized context. Suppose 10% of the
workers participate in the statistics collection process, the proxy
needs to execute 18 encryptions and 18 homomorphic XORs
for a single statistic query when the privacy parameter ε is set
to 5 according to (10). In order to calculate all the statistics
needed for the task selection model, the proxy needs to exe-
cute 18× 27 200 encryptions and 18× 27 200 homomorphic
XORs, which takes 31 and 4 s, respectively. For the same set-
ting, the server needs to decrypt a total of (500 + 18)× 27 200
coins, which takes 36 min. Note that the statistics can be cal-
culated offline and are reusable among workers with similar
contexts. By contrast, if the approach is implemented with the
Paillier system, in order to calculate statistics for a task selec-
tion model, it takes the mobile worker, the proxy, and the server
4 s, 139 min, and 4500 min, respectively. Therefore, the GM
crytosystem use in our framework is highly efficient.

Next, we discuss the storage and communication bandwidth
requirements. Since a worker transmits no more than three
coins for each statistics collection query and a periodically
generated coin for noise addition, the storage requirement for
him is in the order of kilobytes. Considering that workers can
selectly respond to the requests, the storage overhead is quite
acceptable. Suppose the coins should be sent out within 1 s,
the bandwidth requirement would be around 1 kB/s. As for the
proxy, since it needs to store all queried coins and noise coins
before sending them to the server, which is about 518× 27200
coins in total in the above setting, the storage overhead would
be about 1.7 GB. Since the statistics collection process are com-
puted beforehand, we assume the maximum transmission time
is 30 min. Therefore, the bandwidth for sending these data is
1 MB/s. Note that although the storage requirement for comput-
ing a statistic is not small, in practice, the statistic only needs
to be computed once and updated at a low frequency after it
has been calculated. The overheads for the proxy to update the
statistics are at the same order of the overhead for workers.

VIII. RELATED WORK

In this section, we review some works related to our problem
in the literature.

Previous works on privacy issues of mobile applications
mainly focus on location privacy in location-based services,
and they use either obfuscation to hide true locations [33], [34]
or aggregation to hide individual sensitive information [35].
However, none of them discuss how to recommend tasks in
the absence of accurate private information. In this paper, we

consider the fundamental tradeoffs among privacy, utility, and
efficiency, and provides a flexible framework to select tasks at
different tradeoff points.

There are a few works in task recommendation for crowd-
sourcing applications. Ho and Vaughan [36] address the sce-
nario where heterogeneous tasks are assigned to workers with
unknown skill sets with an exploration–exploitation tradeoff.
Yuen et al. [37] utilize performance history and task search his-
tory to model user preference and recommend tasks for a user
based on his/her preference. Ambati et al. [38] implicitly model
user skills and interests, and recommend tasks based on user
preference. However, these works have not addressed the spe-
cific privacy concerns in MC scenarios where tasks should be
recommended to workers based on private, sensitive informa-
tion. To et al. [39] consider spatial crowdsourcing where the
cost for a task depends on the distance between the worker and
the task and implement a toolbox for privacy-preserving spatial
crowdsourcing. Pournajaf et al. [40] formulate an optimization
problem to minimize the cost for all workers in spatial crowd-
sourcing. These previous work mainly focus on coordinated
task assignment where the crowdsourcing server decides which
task is completed by a worker, whereas our task recommen-
dation scenario is autonomous task selection that let workers
select tasks from a list of tasks by themselves.

IX. CONCLUSION

We have considered the privacy issues in task recommen-
dation for MC. We have proposed a task recommendation
framework which recommends MC tasks without violating
worker privacy. The proposed framework is comprised of two
components: task selection component and statistics collection
component. In the task selection component, we have devel-
oped a privacy-aware optimization model of task selection that
considers the intrinsic tradeoffs among utility, privacy and effi-
ciency and selects tasks based on the limited information of
worker context. Workers have the choice of how much private
information they are willing to share with the server. In the
statistics collection component, we have adopted an approach
that gathers necessary statistics about worker contexts while
guaranteeing differential privacy. We have evaluated the effec-
tiveness and efficiency of the proposed framework and analyzed
the system overhead. For future work, we intend to incorporate
other popular task recommendation algorithms such as collabo-
rative filtering. We also plan to jointly consider task assignment
and task recommendation problems in MC systems.
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