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Abstract—Advances in biomedical sensors and mobile communication technologies have fostered the rapid growth of mobile health

(mHealth) applications in the past years. Users generate a high volume of biomedical data during health monitoring, which can be used

by the mHealth server for training predictive models for disease diagnosis and treatment. However, the biomedical sensing data raise

serious privacy concerns because they reveal sensitive information such as health status and lifestyles of the sensed subjects. This

paper proposes and experimentally studies a scheme that keeps the training samples private while enabling accurate construction of

predictive models. We specifically consider logistic regression models which are widely used for predicting dichotomous outcomes in

healthcare, and decompose the logistic regression problem into small subproblems over two types of distributed sensing data, i.e.,

horizontally partitioned data and vertically partitioned data. The subproblems are solved using individual private data, and thus mHealth

users can keep their private data locally and only upload (encrypted) intermediate results to the mHealth server for model training.

Experimental results based on real datasets show that our scheme is highly efficient and scalable to a large number of mHealth users.

Index Terms—Private data analytics, mobile health, predictive model training, logistic regression

Ç

1 INTRODUCTION

MOBILE health (mHealth) technologies, including
remote monitoring, wearable devices, and embedded

sensors, have grown rapidly in the past years and shown
great potential to improve the quality and efficiency of
healthcare. In mHealth, long-term and continuous health
monitoring is enabled by mobile devices that wirelessly con-
nect biomedical sensors. The biomedical sensors can beman-
ufactured to be light, durable, and comfortable at low cost
and can sense a large variety of biomedical signals or physi-
cal activities, such as electrocardiogram, glucose concentra-
tion, breathing rate, pulse rate, blood pressure, peripheral
oxygen saturation, and body motion [1], [2]. An example of
such biomedical sensors is the “biostamp” designed by a
company called MC10, which is quarter-size, waterproof,
and breathable, and costs just tens of cents under batch pro-
duction [3]. The sensed data can be transmitted to a remote
mHealth server, which conducts analysis on the biomedical
data and returns timely advices to the sensed subject. Health
monitoring through biomedical sensors enables timely inter-
vention and better management of individual health status,
thus significantly improving healthcare quality.

Biomedical sensing data collected in health monitoring
have attracted much research interest. First, the subjects of
biomedical sensing include both patients and healthy peo-
ple. The data of healthy people are not available in tradi-
tional healthcare because medical data are only collected

when patients visit clinics. However, biomedical data from
healthy people can be used as positive samples for training
predictive models andwill add important insights of disease
prevention and prediction. Second, since biomedical sensors
can monitor the human body day and night over a long time
span, the data collected by biomedical sensors have much
larger volume than traditional medical data. Data collected
at this scale enable fine-grained diagnosis and treatment
such as personalized medicine, and may largely improve
healthcare quality and efficiency [4]. Due to the huge poten-
tial of biomedical sensing data in healthcare, researchers
from the Institute of System Biology have initiated a project
called 100 KWellness Project, which aims to intensely moni-
tor 100;000 healthy individuals and observe their physiology
for 25 years [5]. It is envisioned that analysis on large-scale
biomedical sensing data will reveal the earliest harbingers of
killer diseases such as cancer and heart disease. Machine
learning techniques are commonly used tools to extract use-
ful information from such big data. How to preserve privacy
in machine learning algorithms is of paramount importance,
which is the subject of this research.

In this paper, we focus on logistic regression, a classic
machine learning technique which is appropriate for pre-
dicting dichotomous outcomes and thus widely used for
making decisions in medical diagnosis and prognosis [6].
For example, logistic regression can be used for calculating
the probability that a patient will suffer cardiovascular dis-
ease [7], diabetes [8], and postpartum depression [9]; and it
is also used for predicting the mortality probability in blunt
trauma [10] and after a heart surgery [11]. Due to the diver-
sity of human physiology, classifiers trained on individual
datasets may not be robust over a wide range of input data.
The availability of large-scale biomedical sensing data paves
the way to collaborative learning [12], which overcomes the
limitation by utilizing multiple user datasets with enough
diversity. In collaborative learning, multiple individuals
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confide their data to a centralized party (e.g., a cloud server
or a research institution, hereafter called mHealth server) as
training samples [13], [14], [15]. The centralized party then
constructs mathematical models based on the data. For
mHealth applications, the collaborative learning may
engage patients with the same disease, patients under simi-
lar treatment, or patients carrying certain genetic patterns.
For ease of presentation, we use the term “Patient” to repre-
sent the subject of sensing, including both healthy persons
and patients. Note that the first character of the term is capi-
talized to remind readers of its broad meaning.

Although collaborative learning based on biomedical
sensing data can be effective in predictive model training, it
also raises serious privacy concerns. Medical data have
always been private in nature. However, privacy issues in
mHealth is especially prominent in multiple aspects. First,
the mHealth server collects a wide range of health informa-
tion including both physiological and physical activity data.
While physiological data reflect health status of Patients
and are private in nature, physical activity data may reveal
sensitive information about lifestyles and activities of
Patients. Second, mHealth devices usually collect user data
continuously over a long period of time, and thus the sens-
ing data contain more private information than medical
data collected in traditional clinic visits. Third, mHealth
applications can be run by a wide range of parties. Thus the
data may not only be learned by healthcare providers, but
also insurance companies, diet advisers, athletic coaches or
home-care providers. In such a setting, Patients may not
trust the mHealth server with their private data. Hence, to
incentivize mHealth users to contribute their data for model
construction, we should guarantee their data privacy.

In this paper, we develop a privacy-preserving collabora-
tive learning scheme that utilizes continuous sensing data
from multiple Patients towards training logistic regression
models in mHealth. The scenario we consider here is that the
training samples are private while the resulting models are
publicly available. We innovatively combine a distributed
algorithm with a modified version of homomorphic encryp-
tion in an innovative fashion and give a scalable and practical
solution for private model training in mHealth without an
active third party. Unlike previous approaches, we leverage
the intrinsic structure of the logistic regression model and
decompose the collaborative learning problem into multiple
subproblems that can be locally solved. An aggregate classi-
fier is then computed by averaging locally trained parameters.
The local training and averaging steps are repeated multiple
rounds until the aggregate classifier converges. Specifically,
we consider two different cases of distributed sensing data:

� Horizontally partitioned data: All Patients have a data-
base of sensing data that are sensed by the same set
of sensors. A typical setting is data collected through
mobile health monitoring programs such as fitness
tracking applications, where Patients’ activities and
sleep patterns are collected through a certain type of
wearable devices.

� Vertically partitioned data: Each Patient only owns a
few sensors and has a database sensed with partial
sensors. With collaborative learning, we try to
exploit these partial sensing data to find a common
health pattern among the users. A typical setting is

for the analysis of group therapy, where each Patient
in the group senses her own data during every group
meeting.

Our scheme is highly efficient and incurs low computa-
tional and communication overhead for each Patient, thus
scalable to a large number of Patients.

The remainder of this paper is organized as follows. We
first present the system model in Section 2. Then we develop
distributed algorithms to decompose the logistic regression
model in Section 3. We further present a secure summation
protocol that enhances the privacy of the distributed algo-
rithms in Section 4. Section 5 demonstrates experimental
results and the performance analysis. We summarize related
work in Section 6. Finally, Section 7 concludes thework.

2 SYSTEM MODEL

In this section, we first outline the system architecture for
private predictive modeling and describe the threat model
and design goals. We then cover background on logistic
regression and present the motivating scenarios in which
private computation on Patient data is desirable.

2.1 System Architecture

We focus on patient-centered mHealth systems where
Patients share their private sensing data with an mHealth
server for model training. The system architecture is shown
in Fig. 1. As shown in the figure, the Patient is continuously
monitored by multiple sensors, generating a large volume of
data such as heart rates, hydration levels, activity levels, and
glucose levels. These sensors are wirelessly connected to a
mobile device, which collects and stores the sensed data.
The raw sensing data in a certain time periodmay be prepro-
cessed and transformed into a feature vector. The task for the
mHealth server is to construct a logistic regression model
which enables computation of the outcome’s probability
given a new feature vector. The model needs to be collabora-
tively learned using datasets frommultiple Patients.

In order to tune the logistic regression model based on
the distributed datasets, we design an iterative algorithm
which decomposes the original logistic regression model
training problem into small subproblems. In each iteration,
Patients use their own private data to construct intermedi-
ate local classifiers, which are aggregated later at the
mHealth server. Since local classifiers are trained based on
the data of each individual Patient, they may contain sensi-
tive information about Patients. To prevent privacy leakage
in local classifiers, we decompose the logistic regression
problem in a way such that in each iteration, the mHealth
server only needs to perform a simple average operation

Fig. 1. Architecture of model training based on biomedical sensing data.
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over local classifiers. We further protect the information of
local classifiers by layering an efficient secure summation
protocol onto the distributed algorithm so that the mHealth
server learns nothing other than the aggregated result in
each iteration. Individual Patient data are thus masked out
in the aggregates which are safe to release.

2.2 Threat Model

We have the following security assumptions. The mHealth
server is assumed to be Honest-but-Curious (HbC). On one
hand, the mHealth server honestly follows the protocol and
is trustworthy to correctly compute predictive models. This
is reasonable since it will be in the best interest of the
mHealth server to obtain an accurate and unbiased model.
The mHealth server has no incentive to tamper intermediate
aggregates or prevent/delay the convergence of the algo-
rithms. On the other hand, the mHealth server is curious
about the private feature vectors of Patients which they do
not want to share. To this end, the mHealth server may (pas-
sively) attempt to infer private inputs of Patients or collude
with some of the Patients to infer private information about
other honest Patients.

We also assume that Patients are HbC. This means that
Patients will faithfully follow the protocols, but they may
collude with the mHealth server or some Patients to infer
the inputs of other Patients. Nevertheless, we assume that
only a small fraction of Patients will collude with the
mHealth server. Note that it is possible that some Patients
are not HbC and are incentivized to bias the computation
results. However, when these Patients send largely biased
data for model training, the uncommon data may be
detected through signal processing techniques [16]. Thus, to
avoid detection, they are assumed to only send slightly
biased data, which are masked out in the aggregates of data
from a large population of Patients and cannot have much
influence on the accuracy of the computation results. Hence,
we argue that in our setting HbC security is sufficient.

We do not consider outsider attacks because such attacks
can be mitigated with system level protection and standard
network security techniques. Specifically, we assume that
the mobile device at each Patient is secure (i.e., the data
stored at the mobile devices are protected from intrusion),
and all the communication channels are reliable, encrypted
and authenticated. Due to limited resources of biomedical
sensors, lightweight cryptography schemes should be
employed for data transmission from sensors to mobile
devices, such as the one introduced in [17].

2.3 Design Goals

Our goal is to provide a practical privacy-preserving solu-
tion for real world model training under aforementioned
security assumptions. To this end, we identify three key
properties for a practical privacy-preserving solution.

� Privacy. Since the mHealth server is not trusted to
learn the training samples, they should be kept
locally at the Patient’s side. How can we design a col-
laborative learning scheme based on distributed data?
We will answer this question with distributed
approaches which iteratively train and aggregate
local classifiers. Second, even if data can be locally

trained, the resulting local classifiers still need to be
aggregated at the mHealth server in each iteration.
These local classifiers are trained based on private
personal data and could reveal sensitive information
about Patients [18]. How can we ensure no private infor-
mation is leaked during the aggregation process?

� Scalability. Our scheme should be scalable to a large
number of mHealth users so that the training sam-
ples provide sufficient diversity for training robust
classifiers. The main factor that influences scalability
is the computational complexity. Considering the
limited computational resources and battery life-
time of mobile devices, we need to keep the
computational and communication overhead at the
Patient side low even with a large number of par-
ticipating Patients.

� Efficiency. Our training scheme must be efficient for
time-series sensing data. In mHealth monitoring,
samples are continuously generated over multiple
time periods. The predictive model may be periodi-
cally updated when new training samples arrive.
This observation motivates us to design a scheme
with low amortized computational overhead (i.e.,
the average computation cost for each time period).

2.4 Logistic Regression

Logistic regression is a classic machine learning technique
that is commonly used in predicting dichotomous out-
comes in medical diagnosis and prognosis [6]. Here we
briefly discuss the basics of logistic regression. Without
loss of generality, we focus on binary class logistic regres-
sion, but our solution is directly applicable to the case of
k-class logistic regression.

Consider a supervised learning task with a set of labeled
training samples fðxi; yiÞ; i ¼ 1; . . . ; Ng, where xi 2 Rn

denotes a feature vector and yi 2 f�1;þ1g denotes the cor-
responding binary class label. The ‘1 regularized logistic
regression problem [19] is defined as

min
XN
i¼1

log 1þ exp �yi wTxi þ v
� �� �� �þ � wk k1; (1)

where the weight vector w 2 Rn and intercept v 2 R are the
parameters of the logistic regression model, and � > 0 is
the regularization parameter.

With the trained regularized logistic regression classifier
ðw; vÞ, a logistic regression models the conditional probabil-
ity distribution of the class label y 2 f�1; 1g given a feature
vector x 2 Rn as follows:

Prðy ¼ 1jxÞ ¼ 1

1þ exp � wTxþ vð Þð Þ ; (2)

Prðy ¼ �1jxÞ ¼ 1

1þ exp wTxþ vð Þ : (3)

The resulting classifier can predict the class label of a new
feature vector, and thus is particularly suitable for disease
state prediction (healthy or unhealthy) and decision making
(yes or no) in medical diagnosis and prognosis. For instance,
in [8], Tabaei and Herman conduct a diabetes study which
screens diabetes based on logistic regression classifiers.
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In their study, each Patient generates a private feature vec-
tor, which consists of age (years), sex (0 ¼ male and 1 =
female), body mass index (BMI), postprandial time (PT),
and random capillary plasma glucose level (RPG). Each fea-
ture vector is associated with a label yi, which is an indicator
of fast plasma glucose (FPG) and plasma glucose 2 h after a
75 g oral glucose load (2-h PG), both indicating the risk of
having diabetes. Specifically, when FPG � 140 mg/dl or 2-h
PG � 200, yi ¼ 1; otherwise, yi ¼ �1. The mHealth server
collects data from 1; 032 Patients and uses the data to train a
logistic regression classifier. The resulting classifier is ðw; vÞ,
where w ¼ ½0:0331; 0:0308; 0:2500; 0:5620; 0:0346� and v ¼
�10:0382. Given a feature vector x, the classifier can predict
the probability that FPG � 140 mg=dlor2� hPG � 200
according to (2) and (3).

Although having many benefits in medical field, logistic
regression poses significant threats to user privacy since it
involves the usage of private sensing data such as blood
level, activity, and age. Therefore, a scheme to preserve user
privacy while not sacrificing utility of the medical sensing
data is needed.

3 PRIVATE PREDICTIVE MODEL TRAINING
VIA DISTRIBUTED COMPUTATION

In this section, we describe a practical privacy-preserving
scheme that enables collaborative model learning over dis-
tributed data. During collaborative model training, each
Patient contributes a set of training samples. Each training
sample is associated with a label (“+1” or “�1” for binary
class). The training samples are considered private as they
may reveal sensitive information such as health status and
unusual activities of individuals. Our scheme is based on an
algorithm called alternating direction method of multipliers
(ADMM). The algorithm provides a possible way to decom-
pose the logistic regression model into smaller subproblems
that can be locally computed. In this section, we first give
some background on ADMM. Then we use ADMM to
design privacy-aware distributed algorithms that solve
logistic regression under two cases of Patient data: horizon-
tally partitioned data and vertically partitioned data, which
correspond to different application scenarios.

3.1 Basics of ADMM

In the following, we describe the basics of ADMM. ADMM
is a distributed algorithm that solves a large-scale optimiza-
tion problem by decomposing it into smaller subproblems
that are easier to solve. ADMM is first introduced by Glo-
winski, Marroco, Gabay, and Mercier [20], [21] in 1976 and
has found applications in many areas since then [22]. The
algorithm solves problems in the following form:

minimize
x;z

fðxÞ þ gðzÞ
subject to AxþBz ¼ c

x 2 X ; z 2 Z;
(4)

where x 2 Rn, z 2 Rm, A 2 Rp�n, B 2 Rp�m, and c 2 Rp. We
assume that functions f and g are convex, and X and Z are
non-empty polyhedral sets. The variables are split into two
parts x and z, and the objective function is separable across
the splitting.

We can form the augmented Lagrangian for (4) as

Lrðx; z; yÞ ¼ fðxÞ þ gðzÞ þ yT ðAxþBz� cÞ
þ ðr=2Þ AxþBz� ck k22;

(5)

where r > 0 is the penalty parameter and the last term is the
regularization term.We can view the augmented Lagrangian
as the Lagrangian associatedwith the following problem

minimize
x;z

fðxÞ þ gðzÞ þ ðr=2Þ AxþBz� ck k22
subject to AxþBz ¼ c;

x 2 X ; z 2 Z:
(6)

Since the regularization term equals zero for any feasible x
and z, the above problem is equivalent to problem (4). The
introduced regularization term ensures that L is strictly con-
vex even when f and g are affine and helps to improve the
convergence property of the algorithm.

ADMM consists of three steps in each iteration k:

1) x-minimization with z and y fixed:

xkþ1 :¼ argmin
x2X

Lrðx; zk; ykÞ: (7)

2) z-minimization with x and y fixed:

zkþ1 :¼ argmin
z2Z

Lrðxkþ1; z; ykÞ: (8)

3) Dual variable y update:

ykþ1 :¼ yk þ rðAxkþ1 þBzkþ1 � cÞ; (9)

where the step size equals to the penalty parameter r.
Note that in ADMM, x and z are updated sequentially

instead of jointly as in dual ascent algorithm. The order of
x-update step and z-update step can be reversed, leading to
a variation on ADMM. The optimality and convergence of
the ADMM algorithm is given by the following theorem,
whose proof can be found in [23].

Theorem 1 ([23]). Assume that the optimal solution set of (4) is
non-empty, and either X is bounded or ATA is nonsingular.

Then a sequence fxk; zk; ykg generated by the iterations (7)-(9)

is bounded, and every limit point of fxk; zkg is an optimal solu-
tion of (4).

In practice, ADMM usually converges to modest accu-
racy within a few tens of iterations.

3.2 Horizontally Partitioned Data

The term “horizontally partitioned data” is initially used in
databases where the data are partitioned based on rows. In
our mHealth scenario, Patients have the same set of biomed-
ical sensors and each Patient generates sensing data with
the same number of features, as shown in Fig. 2a. Each
Patient stores several rows of sensing data with each row
containing the sensing results collected in a single sampling
period. A motivating scenario that generates such data is
mobile health monitoring for diabetes management. Con-
sider that a research institute wants to study the risk factors
that influence the glucose level and construct a predictive
model that predicts whether the glucose level will be
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normal or not given these risk factors. The institute recruits
a group of Patients for its study. As part of the study, a
Patient wears a mobile device provided by the institute that
continuously monitors factors including medication (e.g.,
insulin intake), physical activity (e.g., light exercise), food
intake (e.g., carbohydrates), and other biological (e.g., dawn
phenomenon) and environmental (e.g., altitude) factors.
The Patient also records his/her blood glucose levels at
fixed frequencies (e.g., three times per day) and labels the
blood glucose levels as either ‘positive” or “negative” by
comparing them with a safety threshold. Both feature vec-
tors and labels are sent to the institute, who then trains a
model that predicts whether the blood glucose level is
above or below the safety threshold. Such a model will help
diabetics better monitor their blood glucose levels and
reduce the frequencies of unpleasant blood tests.

In the case of horizontally partitioned data, Patients are
equipped with the same set of sensors and each Patient
obtains a set of feature vectors. Specifically, each Patient i
has a local set of training samples Di :¼ fðaij; bijÞ; j ¼ 1; . . . ;
mig, where aij 2 Rn is a feature vector, bij 2 f�1;þ1g is the
corresponding label of the outcome variable, and mi is the
number of training samples owned by Patient i. The label is
owned by the Patient and assumed to be private. The ‘1 reg-
ularized logistic regression problem becomes the following:

Given a set of labeled training samples [Ni¼1Di from N

Patients, solve

min
XN
i¼1

Xmi

j¼1
log 1þ exp �bij wTaij þ v

� �� �� �þ � wk k1; (10)

wherew 2 Rn; i ¼ 1; . . . ; N and v 2 R.
The above problem cannot be directly solved by ADMM

since the objective function is not separable over two sets of
variables. To address this challenge, we introduce a set of
auxiliary variables fðwi; viÞg; i ¼ 1; . . . ; N and reformulate
the optimization problem as

min
XN
i¼1

Xmi

j¼1
log 1þ exp �bij wT

i aij þ vi
� �� �� �þ � wk k1

s:t: wi ¼ w; vi ¼ v; i ¼ 1; . . . ; N:

(11)

It is obvious that the new problem (11) is equivalent to the
original problem (10). Note that the objective function in the
problem (11) is now separable over two sets of variables
fðwi; viÞ; i ¼ 1; . . . ; Ng and ðw; vÞ. We can view ðwi; viÞ as
the copy of regression parameters at Patient i and ðw; vÞ as
the copy of regression parameters at the mHealth server

side. These two sets of variables are connected through
equality constraints.

In the following, we demonstrate that through these aux-
iliary variables the problem can be decomposed into several
subproblems. For simplicity of notation, we define a :¼
fðw; vÞg and b :¼ fðwi; viÞ; i ¼ 1; . . . ; Ng. Following the
framework of ADMM, we formulate the augmented
Lagrangian of (11) as

Lrða;b; gÞ ¼
XN
i¼1

Xmi

j¼1
log 1þ exp �bij wT

i aij þ vi
� �� �� �

þ � wk k1þ
XN
i¼1

�ðwi �wÞTggi;w þ gi;vðvi � vÞ�

þ
XN
i¼1
ðr=2Þ�ðwi �wÞT ðwi �wÞ þ ðvi � vÞ2�;

(12)

where g :¼ fðggi;w; gi;vÞ; i ¼ 1; . . . ; Ng are the dual variables
corresponding to the constraints in (11).

We then solve the problem by updating a, b, and g

sequentially. Specifically, at the (kþ 1)th iteration, the a-
minimization step involves solving the following problem:

min
a

� wk k1 þ ðrN=2ÞwT w� 2wk � 2ggkw=r
� �

þ ðrN=2Þv v� 2vk � 2gk
v=r

� �
;

(13)

where the overline notation ð�Þ denotes the average of a vec-
tor over i ¼ 1; . . . ; N . A closed-form solution of the above
problem can be computed using subdifferential calculus
[24]. Specifically, the optimal solution is given by

wkþ1 :¼ wk þ ggk
w=r� ð�=rNÞ

� �
þ

� �wk � ggk
w=r� ð�=rNÞ

� �
þ

(14a)

vkþ1 :¼ vk þ gkv=r; (14b)

where the operator ½��þ means taking the maximum of zero
and the argument inside.

After obtaining akþ1 from the a-minimization step, the
b-minimization step consists of solving the following:

min
b

XN
i¼1

Xmi

j¼1
log 1þ exp �bij wT

i aij þ vi
� �� �� �

þ
XN
i¼1
ðr=2ÞwT

i ðwi � 2wkþ1 þ 2ggk
i;w=rÞ

þ
XN
i¼1
ðr=2Þviðvi � 2vkþ1 þ 2gk

i;v=rÞ;

(15)

Fig. 2. Illustration of (a) horizontally and (b) vertically partitioned data.
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which is decomposable over all Patients. Effectively, each
Patient i only needs to independently solve the following
subproblem:

min
bi

Xmi

j¼1
log 1þ exp �bij wT

i aij þ vi
� �� �� �

þ ðr=2ÞwT
i ðwi � 2wkþ1 þ 2ggk

i;w=rÞ
þ ðr=2Þviðvi � 2vkþ1 þ 2gk

i;v=rÞ:

(16)

This per-Patient subproblem has a much smaller scale and
uses the Patient’s own private information. Standard meth-
ods such as Newton’s method or the conjugate gradient
method can be applied to solve the subproblem efficiently.

After we obtain akþ1 and bkþ1, the dual update is as
follows:

ggkþ1i;w :¼ ggki;w þ r wkþ1
i �wkþ1� �

; (17a)

gkþ1
i;v :¼ gk

i;v þ r vkþ1i � vkþ1
� �

: (17b)

The entire procedures of our algorithm are described in
Algorithm 1. Obviously, our problem meets the conditions
in Proposition 1, and the proposed algorithm converges to
the optimal solution. At the end of the algorithm, each
Patient i will learn the global optimal classifiers w and v
without sending his/her local training set to others. There-
fore, this system can preserve user privacy without sacrific-
ing the utility of the learning function.

Algorithm 1. Distributed Algorithm for Horizontally
Partitioned Data

1: The mHealth server initializes k 0,w0  0, v0  0.
2: Each Patient i initializes k 0, gg0i;w  0, and g0i;v  0.
3: repeat
4: The mHealth server gathers ðwk

i ; v
k
i Þ and ðggki;w; gki;vÞ from all

Patients i 2 N and averages them to get wk, vk, ggk
w, and gk

v .

Then it updates wkþ1 and vkþ1 according to (14) and
broadcasts them to all Patients.

5: After receivingwkþ1 and vkþ1, each Patient i solves the per-
Patient subproblem (16) independently using his/her own
training set and then updates independently the dual vari-
ables according to (17).

6: Each Patient sends the optimal solution ðwkþ1
i ; vkþ1i Þ and

ðggki;w; gk
i;vÞ to the mHealth server.

7: k kþ 1
8: until Convergence criteria is met

3.3 Vertically Partitioned Data

The term “vertically partitioned data” refers to partitioning
data based on columns in databases. In vertically parti-
tioned datasets, each row represents data sampled at the
same time slot or under the same context, and the data in
each row are collaboratively sensed by all Patients as shown
in Fig. 2b. Instead of exploiting the diversity of individuals
for robustness as in the horizontally partitioned case, we try
to involve more features of sensing data. We assume that
Patients own disjoint subsets of sensors, and we aim to fit
models with sensing data from the union of all these sen-
sors. A motivating scenario is the analysis of group therapy.

Consider a therapy group where a therapist treats a group
of Patients. After each group meeting, the therapist will
evaluate the group meeting as effective (“+1”) or ineffective
(“�1”), which is the label of this meeting. Each participant
of the group is equipped with sensors to sense his/her own
biological and emotional status during the group meeting.
The feature vector of a group meeting is the sensing data
from all Patients. A series of group meeting will be held
during some period, resulting in a vertically partitioned dis-
tributed dataset.

The vertically partitioned case is particularly useful when
we need to monitor the data of all members in a group for
group effect evaluation, as in the group therapy case. It is
also very useful in a high dimensional data setting where the
number of features (i.e., sensed metrics or risk factors of a
disease) is very large. In this case, it would be a great commit-
ment for an individual to use all sensors on his/her body,
especially under a continuous sensing environment, because
it is cumbersome and inconvenient. Thus an individual may
hesitate to participate in such projects. Moreover, in many
cases the training data are by-products of other health moni-
toring programs where Patients only use a small set of sen-
sors that are closely related to their own health statuses.

In the case of vertically partitioned data, each Patient i is
equipped with a subset of sensors and obtains partial fea-
ture vectors over a specified time interval. Specifically, each

Patient i poses a set of training samples D̂i :¼ fðâij; b̂jÞ; j ¼
1; . . . ;mg, where âij 2 Rni is a partial feature vector,

b̂j 2 f�1; 1g is the corresponding label of the outcome vari-
able, m is the number of training samples owned by each

user, and
PN

i¼1 ni ¼ n. As with other papers [25] in litera-

ture, the labels fb̂j; j ¼ 1; . . . ;mg are assumed to be known
by all Patients and not private. Then, the ‘1 regularized
logistic regression problem becomes the following: Given a

set of labeled training samples [Ni¼1D̂i, solve

min
Xm
j¼1

log 1þ exp �b̂j
XN
i¼1

wT
i âij þ v

 ! ! !

þ �
XN
i¼1

wik k1;
(18)

wherewi 2 Rni ; i ¼ 1; . . . ; N and v 2 R.
To solve the above problem with ADMM, we first intro-

duce a set of auxiliary variables fzij; i ¼ 1; . . . ; N; j ¼ 1; . . . ;mg
and reformulate the optimization problem as

min
Xm
j¼1

log 1þ exp �b̂j
XN
i¼1

zij þ v

 ! ! !
þ �

XN
i¼1

wik k1;

s:t: wT
i âij � zij ¼ 0; i ¼ 1; . . . ; N; j ¼ 1; . . . ;m:

(19)

It is obvious that the new problem (19) is equivalent to the
original problem (18). The objective function now is separa-
ble over two sets of variables fðv; zijÞ; i ¼ 1; . . . ; N; j ¼
1; . . . ;mg and fwi; i ¼ 1; . . . ; Ng.

In the following, we demonstrate that through these
auxiliary variables the problem can be decomposed. For
simplicity of notation, we define â :¼ fwi; i ¼ 1; . . . ; Ng

436 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGYAND BIOINFORMATICS, VOL. 13, NO. 3, MAY/JUNE 2016



and b̂ :¼ fðv; zijÞ; i ¼ 1; . . . ; N; j ¼ 1; . . . ;mg. Following the
framework of ADMM, we formulate the augmented
Lagrangian as

Lrðâ; b̂; ĝÞ ¼
Xm
j¼1

log 1þ exp �b̂j
XN
i¼1

zij þ v

 ! ! !

þ �
XN
i¼1

wik k1 þ
Xm
j¼1

XN
i¼1

gij wT
i âij � zij

� �

þ
Xm
j¼1

XN
i¼1
ðr=2Þ wT

i âij � zij
� �2

;

where ĝ :¼ fĝij; i ¼ 1; . . . ; N; j ¼ 1; . . . ;mg are the dual vari-
ables corresponding to constraints (19).

Our algorithm works as follows. At the ðkþ 1Þth itera-
tion, the â-minimization step involves solving the following
problem for each Patient i in parallel:

min � wik k1 þ ðr=2Þ
Xm
j¼1

wT
i âij wT

i âij � 2zkij þ 2ĝk
ij=r

� �
: (20)

After obtaining âkþ1 from the â-minimization step, the

b̂-minimization step consists of solving the following:

min
Xm
j¼1

log 1þ exp �b̂j
XN
i¼1

zij þ v

 ! ! !

þ ðr=2Þ
Xm
j¼1

XN
i¼1

zij zij � 2ðwkþ1
i ÞT âij � 2ĝkij=r

� �
:

(21)

The b̂-minimization problem can be further simplified as
follows. Let zj denote the average of zij across all i. The

b̂-update problem can be rewritten as

min
Xm
j¼1

log 1þ exp �b̂j Nzj þ v
� �� �� �

(22a)

þ ðr=2Þ
Xm
j¼1

XN
i¼1

zij zij � 2ðwkþ1
i ÞT âij � 2ĝk

ij=r
� �

s:t: zj ¼ ð1=NÞ
XN
i¼1

zij:

(22b)

Note that in the above problem, minimizing over zij; 8i
with zj fixed has the solution

zij ¼ ðwkþ1
i ÞT âij þ ĝk

ij=r þ zj

� ð1=NÞ
XN
i¼1

ĝij
k=r þ ðwkþ1

i ÞT âij
� �

:
(23)

Therefore, Problem (22) can be computed by solving the fol-
lowing unconstrained optimization problem:

min
Xm
j¼1

 
log 1þ exp �b̂j Nzj þ v

� �� �� �
þ ðrN=2Þz2j

� rzj
XN
i¼1

ĝk
ij=rþ ðwkþ1

i ÞT âij
� �! (24)

and then applying (23) to obtain zij.

By substituting (23) for zkþ1ij in the dual update equation
gives

ĝkþ1ij :¼ r ð1=NÞ
XN
i¼1

ĝkij=rþ ðwkþ1
i ÞT âij

� �
� zkþ1j

 !
; (25)

which does not depend on i. Therefore, the dual variables

ĝkþ1ij ; i ¼ 1; . . . ; N are all equal and can be replaced by a sin-

gle dual variable ĝkþ1
j .

In summary, by substituting ĝj and (23) into the â-min-

imization, b̂-minimization, and dual variable update
equation, our final algorithm consists of the following
iterations:

wkþ1
i :¼ argmin

wi

� wik k1þðr=2Þ
Xm
j¼1

wT
i âij

� �2
(26)

� r
Xm
j¼1

wT
i â

T
ij ðwT

i Þkâij þ zkj þ
ĝk
j

r
� 1

N

XN
i¼1
ðwT

i Þkâij
 !

;

b̂kþ1 :¼ argmin
z;v

Xm
j¼1

�
log 1þ exp �b̂j Nzj þ v

� �� �� �

� ĝk
jNzj þ rN

2
z2j � rzj

XN
i¼1
ðwT

i Þkþ1âij
	
;

(27)

ĝkþ1
j :¼ ĝk

j þ r
1

N

XN
i¼1
ðwT

i Þkþ1âij � zkþ1j

 !
: (28)

The entire procedures of our algorithm are described in
Algorithm 2. At the end of the algorithm, Patients will learn
the global optimal regression parameters w and v without
disclosing their local training set to others.

Algorithm 2. Distributed Algorithm for Vertically Parti-
tioned Data

1: Initialization: k 0, ðwT
i Þ0  0, z0j  0, and ĝ0j  0.

2: repeat
3: Each Patient i solves the per-Patient subproblem (26) inde-

pendently using his/her own training set to obtain the

optimal solution wkþ1
i and then sends fðwT

i Þkþ1âij; j ¼
1; . . . ;mg to the mHealth server.

4: After gathering fðwT
i Þkþ1âij; j ¼ 1; . . . ;mg from all Patients

i ¼ 1; . . . ; N , the mHealth server averages them to obtain

ð1=NÞPN
i¼1ðwT

i Þkþ1âij; j ¼ 1; . . . ;m. Then it updates vkþ1

and fzkþ1j ; j ¼ 1; . . . ;mg according to (27), and dual varia-

bles fĝkþ1
j ; j ¼ 1; . . . ;mg according to (28).

5: The mHealth server broadcasts zkþ1j , ĝkþ1j , and ð1=NÞPN
i¼1ðwT

i Þkþ1âij to all Patients.

6: k kþ 1
7: until Convergence criteria is met

4 PRIVATE AGGREGATION OF LOCAL REGRESSION

PARAMETERS

In this section, we describe a secure summation protocol
that enhances the privacy of the distributed algorithms. The
protocol computes the sum over encrypted values such that
only the sum is learned by the mHealth server.
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4.1 Private Computation at the mHealth Server

In the distributed algorithm for horizontally partitioned
data, each Patient i sends his/her local optimal solution

ðwkþ1
i ; vkþ1i Þ and ðggki;w; gk

i;vÞ to the mHealth server (Line 4,

Algorithm 1). However, these local regression parameters
are trained on individual private data and may leak sensi-
tive information about Patients [18]. We observe that in
each iteration, the mHealth server only needs to know the

average of these local optimal solutions, i.e., wk, vk, ggk
w, and

gk
v. Similar observation can be made for the distributed algo-

rithm for vertically partitioned data, where the mHealth

server gathers fðwT
i Þkþ1âij; j ¼ 1; . . . ;mg from all Patients

i ¼ 1; . . . ; N but only needs to know the averages

ð1=NÞPN
i¼1ðwT

i Þkþ1âij; j ¼ 1; . . . ;m (Algorithm 2, Line 4).
Hence, the privacy issues in both algorithms can be miti-
gated if the mHealth server can calculate the average (or
sum) without knowing the individual values.

Wewill first describe a naive approach that enables secure
summation over distributed private values but leaks private
values under collusion attacks. Then we will present a solu-
tion that mitigates such attacks with low computational and
communication overhead. For simplicity we only describe
how the mHealth server can obtain vk from distributed val-

ues vkþ1i ; i ¼ 1; . . . ; N without learning them. Without loss of

generality, we assume that vkþ1i is an integer. Averaging over
other types of distributed values (i.e., real numbers or vec-

tors) can be calculated in a similar way: (i) When vki is a real
number, a given precision is chosen in advance, and real
numbers at the precision can be scaled by the corresponding
factor to make them integers for encoding, as described in
[26]; (ii) Averaging vectors can be treated as aggregating sca-
lars at each component of the vectors. When the context is
clear, we omit the superscript k and kþ 1.

4.1.1 Naive Approach

A naive solution to averaging distributed private values is
the secure summation protocol proposed by Clifton et al.
[27]. Using their protocol, patients are arranged in a unidi-
rectional ring with one patient acting as the protocol initia-
tor. The protocol initiator selects a random number and
adds the number to his/her own data, then the sum is
passed along the ring, with Patients along the ring adding
their own data to the sum. When the protocol initiator
receives the sum again, he/she subtracts the random num-
ber from the sum and obtain the accurate sum of all
Patient’s data. The average can be directly computed by
dividing the sum by N . Since the values passed between
Patients are masked by a random value, which is only
known by the protocol initiator, these values are kept pri-
vate. However, this approach is not secure against collu-
sion: If the two neighbors of a Patient collude, they can infer
the private value of the Patient. Moreover, this protocol
requires Patients to interact with each other whenever a
sum needs to be calculated, which is undesirable for compu-
tation over multiple iterations as required in our algorithms.

4.1.2 Modified Approach

To overcome the two aforementioned shortcomings, we use
a homomorphic approach that is robust against collusion

attacks and highly efficient for computation over multiple
iterations [28]. With this approach, secure summation can
be achieved without any active trusted third-parties.
Moreover, this approach has low amortized computa-
tional overhead and is thus efficient for our iterative algo-
rithms. The overview of this approach is shown in Fig. 3.
At the beginning of the aggregation process, each Patient
i has a secret key ski and the mHealth server has a secret

key sk0, where
PN

i¼0 ski ¼ 0. The Patient encrypts his/her
private data vi as vi þ ski and sends the ciphertext to
the mHealth server. The mHealth server sums all the

ciphertext and decrypts the sum as
PN

i¼1 vi ¼
PN

i¼1
ðvi þ skiÞ � sk0. Since the mHealth server does not know
the secret values of ski, the individual ciphertexts are
meaningless random numbers from the view of the
mHealth server. This scheme prevents collusion attack
because each private value is randomized by a separate
secret key and will only be revealed if the mHealth server
colludes with all other Patients, which is unlikely.

In order to guarantee that
PN

i¼0 ski ¼ 0, secret keys
should be collaboratively generated in every iteration. This
process requires an active trusted third party and is not
practical for our iterative algorithms. To overcome this chal-
lenge, we rely on a hash function H that maps an integer to
an appropriate mathematical group. In the kth iteration of

our algorithms, each Patient i computes HðkÞski and the

mHealth server computes HðkÞsk0 . From PN
i¼0 ski ¼ 0, we

have
QN

i¼0 HðkÞski ¼ 1, which can be leveraged to generate
secret keys without interactive communication in each itera-
tion. We summarize the protocol below.

Let G denote a cyclic group of prime order p for which
Decisional Diffie-Hellman problem is hard. Let H : Z! G

denote a hash function.

� Key generation: A trust authority chooses a random
generator g 2 G and random secrets sk1; . . . ; skN 2
Zp. The public parameter is g. Each user i obtains a
private key ski , and the mHealth server obtains its
private key sk0 ¼ �ðsk1 þ . . .þ skNÞ.

� Encryption: During iteration k, Patient i encrypts
his/her private value vi as follows:

ci  gvi �HðkÞski :

� Decryption: Given the ciphertext c1; c2; . . . ; cn,
compute

Fig. 3. Aggregation of private user data.
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P  HðkÞsk0
Yn
i¼1

ci;

where P ¼ HðkÞsk0Qn
i¼1 ci ¼ HðkÞ

Pn

i¼0 ski � g
Pn

i¼1 vi ¼
g
Pn

i¼1 vi . The sum of vi can then be calculated by
computing the discrete log of P base g.

The scheme allows untrusted mHealth server to periodi-
cally estimate the sum

PN
i¼1 vi without knowing each indi-

vidual value of vi; i ¼ 1; 2; . . . ; N . The average v can then be
readily calculated by dividing the sum by the total number
of Patients N . Since Patients do not need to communicate
with each other for sharing secrets after the initial key gen-
eration process, we only require a passive trusted authority
during initialization. Hence, the computational overhead of
secret keys does not increase with the iteration process,
achieving low amortized computational overhead.

The computational overhead for the aggregation pro-
cess in each iteration comes from two parts: encryption
and secret key generation. Encryption operation in the
construction includes one hash, one multiplication in a
Diffie-Hellman group, and two modular exponentiations.
The two modular exponentiations takes much longer than
other operations and thus dominate the running time.
According to the benchmarking report of eBACs project
[29], it takes around 0:3ms to compute a modular expo-
nentiation using high-speed elliptic curves on a modern
64-bit computer. Hence, the construction is practical and
poses low computational overhead for the Patients in
mHealth applications.

4.2 Provable Privacy

We prove the privacy of our approach from the following
two aspects:

First, we show that our computation protocol leaks no
information beyond the intermediate and final aggregated
regression parameters. We note that the homomorphic
approach we use in our scheme is “aggregator oblivious” in
the sense that the aggregator (i.e., mHealth server) learns
only the sum for each time period and nothing more.
Detailed proof of this property can be found in [28]. Basi-
cally, their proof is based on the assumption that the
Decisional Diffie-Hellman problem is computationally
infeasible for probabilistic polynomial-time adversaries.
The “aggregator oblivious” property of the homomorphic
approach guarantees that the mHealth server cannot learn
any unintended information other than what can be
deduced from its auxiliary knowledge and the revealed
computation results. From the mHealth server’s view, the
input data of the aggregation protocol, i.e., Patients’ inter-
mediate regression parameters, are indistinguishable from
data uniformly chosen at random from the plaintext space.

Second, We show the information leakage during the
iterations of our algorithms is bounded. Intuitively, we can
view the sum of local parameters revealed in each iteration
as “global” information and thus privacy-preserving in
common practice. We can provide a strong privacy guaran-
tee, (�; d)-differential privacy (DP) [30], [31], which ensures
that the privacy risk of a user does not substantially increase
if the user participates in collaborative learning despite of
the auxiliary knowledge of adversaries. Formally speaking,

Definition 1. 8�; d � 0, a randomized algorithm F gives
ð�; dÞ-DP if for any two datasets D1 and D2 which differ in
only one element, and 8O � rangeðFÞ, the following inequal-
ity holds:

ln
Pr½FðD1Þ 2 O� � d

Pr½FðD2Þ 2 O� 	 �: (29)

Here the parameter � bounds the ratio of probability distri-
butions of two datasets differing on at most one element,
and d relaxes the strict relative shift at events that are not
especially likely.

Most solutions that achieve differential privacy are based
on perturbing the response with additive noise [30], [32] or
perturbing the computation with external randomness [18],
[33]. This can also be achieved in our scheme. Note that
we want to add the proper amount of noise to the aggre-
gated result rather than each individual local parameter,
because the noise for the the latter case would be larger
under the same privacy requirement. Meanwhile, we need
to ensure that the aggregated results are perturbed before
they are decrypted by the mHealth server. A feasible way to
achieve this is to introduce a proxy which can be another
server at the mHealth service provider, and let the server
and the proxy collaboratively add noise before decrypting
the aggregated results, as proposed in [28]. Since the aggre-
gation process in our algorithms is repeated iteratively, the
noise added in each iteration would accumulate. However,
due to the good convergence properties of our algorithms
(usually converge within a few tens of iterations), the total
added noise can be controlled at a low level, ensuring the
accuracy of the final results.

Furthermore, we note that the process of aggregation have
already incorporated randomness, thus providing certain
privacy protection itself. In fact, Duan [34] has provided a
rigorous proof that differential privacy can be achieved by
aggregating vectors from a large number of entities under
certain constraints, as summarized in the following theorem:

Theorem 2 ([34]). Let f be the sum of N n-vectors wi; i ¼
1; . . . ; N , wi 2 ½0; 1�n. Assuming w1; w2; . . . ; wN are i.i.d.

with E½wi� ¼ t; E½wiw
T
i � � ttT ¼ V < 1, the summation is

(�; d)-DP if N is sufficiently large and

�minðV Þ > 2n2 log ð2n=dÞ
ðN � 1Þ�2 ; (30)

where �minðV Þ is the smallest eigenvalue of matrix V .

This theorem provides a theoretic basis for achieving dif-
ferential privacy in the aggregation process. Even if for a
given set of ð�; dÞ, the constraint (30) is not satisfied, i.e., the
aggregation process can not provide enough privacy protec-
tion, we may still achieve ð�; dÞ-DP with the perturbation
approach, and the amount of noise required in the perturba-
tion approach may be further reduced with Theorem 2.

5 PERFORMANCE EVALUATION

In this section, we evaluate the performance of our
approach based on real-world datasets. All the simulations
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are conducted in MATLAB using a notebook with 1:6 GHz
CPU and 4 Gmemory.

To provide benchmarks for the performance of our dis-
tributed approach, we compare it with the following two
baselines:

� Centralized approach: In this approach, the mHealth
server has access to all Patient data and solves the
logistic regression problem centrally. Although this
algorithm can obtain the optimal performance, it vio-
lates Patient privacy and thus is privacy-oblivious.

� Local approach: In this approach, each Patient trains
the logistic regression model solely based on his/
her own local data. Since the performance of the
model highly depends on the size of training set,
the local approach has lower performance than the
centralized approach. In other words, the local
approach protects Patient privacy at the cost of
utility or accuracy.

5.1 Results on Activity Recognition Task
(Horizontally Partitioned Dataset)

We first demonstrate the performance of our distributed
approach for horizontally partitioned data (Algorithm 1).
We test our approach on the dataset for the physiological
data modeling contest at the International Conference on
Machine Learning in 2004 [35]. The dataset was collected
from users using BodyMedia wearable body monitors. We
use a subset of the dataset to classify two states of activities,
which includes 4;413 positive samples (context 1) and
98;172 negative samples (context 2). Each sample contains
nine dimensional physiological data and three characteris-
tics (denoted as “char” 1, “char” 2, and sex) of the users.
Thus, we construct a 102;585� 12 matrix from the monitor-
ing data. The label for each row is the context of the user
when the sample is collected: When the user is under con-
text 1, we label it as 1; otherwise, we label it as �1. We aim
to train a logistic regression model that predicts the label
based on a new sample. In each experimental trial, we ran-
domly select 14;000 training samples (4;000 positive sam-
ples, 10;000 negative samples) and 1;413 testing samples

(413 positive samples, 1;000 negative samples). The test
error rates of algorithms are averaged results of 10 experi-
mental trials.

We implement our distributed algorithm and observe
good convergence properties for different numbers of
Patients N . Since the convergence properties for different N
are similar, we only demonstrate the convergence results
for N ¼ 1;000. The convergence property of our distributed
algorithm is depicted in Fig. 4, which shows the change of
the logistic regression parameters w.r.t. the iteration num-
ber k. The x-axis of the plot represents the number of itera-
tions k, and the y-axis of the plot represents the norm of the
distance between the global optimal regression parameters
and the intermediate regression parameters in each itera-
tion. We can see from the figure that the logistic regression
parameters obtained by our approach converges fast
(around 40 iterations) to the optimal ones. To demonstrate
the accuracy loss of the distributed approach w.r.t. the cen-
tralized approach, we show in Fig. 5 the change of the objec-
tive function value w.r.t. iteration number k. The solid line
indicates the objective value obtained by our approach, and
the dashed line denotes the global optimal objective value
obtained by the centralized approach. As shown in the
figure, the objective value of our approach decreases very
fast in the first few iterations and finally approaches the
optimal value after 40 iterations. This indicates that our dis-
tributed approach can achieve the same accuracy as the cen-
tralized one, thus preserving privacy at no cost for accuracy.

As we have shown in Figs. 4 and 5, the model computed
from the centralized approach is the same as that from our
distributed approach. Therefore, we only need to compare
the testing error rates of models computed by the distrib-
uted approach and the local approach. Since for the local
approach, the performance depends on the size of training
set for each user, we compare them under different user
numbersN to see the influence of local data size on the error
rates. Note that when N ¼ 1, the performance of the two
approaches are the same since both are identical to the cen-
tralized approach. We set N ¼ 100; 200; . . . ; 1;000 and then
randomly divide the original datasets into smaller training

Fig. 4. Convergence of the logistic regression parameters obtained from
our distributed approach on the horizontally partitioned dataset.

Fig. 5. Comparison of the objective of our approach (solid line) and the
optimal objective (dashed line) on the horizontally partitioned dataset.
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sets, respectively. The testing error rates of our distributed
approach and the local approach are shown in Fig. 6. On
one hand, the error rate of the local approach increases as N
increases (i.e., sample size per user decreases) due to the
lack of diversity through data sharing. On the other hand,
the error rate of our approach does not change w.r.t N
because our algorithm always converges to the global opti-
mal solution. This shows the advantage of collaborative
learning by utilizing datasets sensed by multiple users.

The maximum computation time for any user at each
iteration in our algorithm is 0:007 sec. The total time for the
distributed approach to converge is around 0:12 sec. There-
fore, our approach converges fast to the global optimal solu-
tion and incurs small computation overhead for each user.

5.2 Results on Imagery Task Classification
(Vertically Partitioned Dataset)

In this section, we demonstrate the performance of our dis-
tributed approach for vertically partitioned data (Algo-
rithm 2). Since no vertically partitioned medical database is
readily available, we utilize dataset I of the Brain-Computer
Interface Competition III (BCI-III-I) [4], [36] to simulate our
scenario. The dataset records electrocorticography (ECoG)
data of epileptic patients. In the original setting, each patient
is sensed by 64 implanted electrodes covering certain loca-
tions of the cortex. However, here we assume that data for
each trial is collaboratively sensed by 64 patients with 1
electrode implanted in each patient. A total of 278 trials are
performed for data collection. Each trial starts with a cue of
an imagery task (tongue or finger movement), and patients
are required to mentally follow the cue. Their ECoG data
during a 3-second imagination phase are sampled at sam-
pling rate of 10 Hz, resulting in 30� 64 data points or a
1; 920-dimensional feature vector per trial. The data for all
278 trials form a 278� 1; 920 matrix. Each row of the matrix
represents data sampled with the same imagery cue by all
64 patients and has the same label (þ1 or �1 for two differ-
ent imagery tasks, respectively). The number of available
training points is relatively small compared to the
dimensionality of the data signal, which is a common case
for vertically partitioned databases and can be effectively

addressed by our distributed approach. Note that we use
data sensed by a single patient to simulate data sensed by
64 patients, thus the training result may deviate from the
original vertically partitioned setting. However, the goal of
this experiment is to test the performance of our distributed
approach rather than obtaining the regression parameters,
thus this deviation does not invalidate our conclusion. In
each experimental trial, we randomly select 200 training
samples (100 positive, 100 negative) and 78 testing samples
(36 positive, 36 negative) with each sample collaboratively
sensed by 64 users. The testing error rates are the average
results of 10 experimental trials.

Once again, we observe good convergence properties of
our algorithms for different numbers of Patients N and
therefore, for simplicity, we only show the convergence
results of our distributed algorithm for N ¼ 64. Fig. 7 illus-
trates the change of the logistic regression parameters w.r.t.
the iteration number k when the dataset is vertically parti-
tioned into N ¼ 64 subsets. The figure shows that the differ-
ence between the regression parameters obtained by our

Fig. 6. Testing errors for our distributed approach and the local approach
on the horizontally partitioned dataset. Fig. 7. Convergence of the logistic regression parameters obtained from

our distributed approach on the vertically partitioned dataset.

Fig. 8. Comparison of the objective of our approach (solid line) and the
optimal objective (dashed line) on the vertically partitioned dataset.
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algorithm and the optimal parameters converges to zero
within tens of iterations. Fig. 8 shows the change of the objec-
tive function value w.r.t. iteration number. The solid line
indicates the objective value obtained by the distributed
approach, and the dashed line denotes the optimal objective
value obtained by the centralized approach. As shown in the
figure, the objective value of our approach decreases fast in
the first few iterations and finally approaches the global min-
imumafter 50 iterations. Therefore, our distributed approach
can achieve the same accuracy as the centralized one.

Next, we compare the error rates of models computed by
the distributed approach and the local approach. Since for
the local approach, the performance depends on the size of
training set for each user, we compare these two approaches
under different user numbers N to see the influence of local
data size on the error rates. When N ¼ 1, the performance
of the two approaches are the same since both are identical
to the centralized approach. We set N ¼ 2; 4; 8; 6; 32; 64 and
randomly partition the original datasets into smaller train-
ing sets, respectively. Fig. 9 shows the error rates of our dis-
tributed approach and the local approach. We can see that
the error rate of the local approach increases as N increases
(i.e., sample size per user decreases) due to the lack of diver-
sity through data sharing. The performance of our distrib-
uted approach does not depend on N since it always
converges to the optimal solution after tens of iterations.
The figure shows the benefit of data sharing in the vertically
partitioned data.

The maximum computation time for any user at each
iteration in our algorithm is 0:023 sec and the total time
spent until convergence is 1:15 sec. Therefore, our approach
is highly efficient even with 1;960-dimensional data.

6 RELATED WORK

There are a number of papers on private computation on
medical data, but most of them focus on simple computa-
tions such as searching on encrypted medical data [37],
computing statistical functions such as sum and variance
[38], or performing predictive analysis tasks on encrypted
data [26]. Few papers consider private model learning based

on large-scale medical data despite of its great potential for
healthcare quality and efficiency improvements. There are,
however, several approaches for private model learning in
general as summarized below.

6.1 Anonymization

One of the most popular ways for privacy-preserving
learning is to anonymize the data by hiding the identity of
the data source [39], [40]. However, it is possible to re-iden-
tify the data source. Narayanan and Shmatikov design a
linkage attack that identifies personal information by link-
ing two or more separate datasets [41]. A recent study in
medical data demonstrates that individuals with detailed
medical profiles are re-identified among anonymized med-
ical data [42].

6.2 Perturbation-Based Approach

Another approach is to perturb the data content before
transmitting it to the centralized party [43], [44], [45], [46].
Fong and Weber-Jahnke [43] transform the original training
samples into unreal data samples and use the unreal data
samples for decision tree learning. However, perturbation
always introduces error in the modeling process, trading
accuracy for privacy. A modern privacy definition related
with this approach is differential privacy, which requires
that the output of a computation be equally likely with or
without an input record [31]. The most common way to
achieve differential privacy is through adding random noise
[32]. In [47], McSherry and Mironov design a privacy-pre-
serving scheme for training a recommendation system by
adding differentially private noise to user data. Our
approach is orthogonal to differential privacy due to differ-
ences in threat models. Differential privacy protect private
information contained in the final computational results by
injecting noise to the results, while we aim to protect private
information during the computation process such that the
party who performs the computation learns nothing more
than the computational results.

6.3 Secure Multi-Party Computation

Secure multi-party computation-based approach is a con-
ventional approach to training classifiers based on private
data owned by multiple parties. A combination of crypto-
graphic techniques is used to compute a function of their
private data [48], [49], [50]. This approach usually guaran-
tees that none parties can learn anything beyond what is
contained in the final result. However, the cryptographic
techniques used in secure multi-party computation usually
incur high computation cost, which is impractical for
mHealth applications due to limited computing resources
of mobile devices.

6.4 Homomorphic Encryption

Gentry [51] provides a fully homomorphic encryption
solution for privacy-preserving computation, which
avoids the need for two non-colluding parties. However,
logistic regression involves a large number of both multi-
plication and addition steps. In this situation, current sol-
utions for fully homomorphic encryption are not quite
efficient [38], [52]. Although Lauter et al. [38] mention

Fig. 9. Testing errors for our distributed approach and the local approach
on the vertically partitioned dataset.
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that their fully homomorphic encryption scheme can be
used for regression, they do not show its performance.
Graepel et al. train encrypted classifiers on encrypted
training data using leveled homomorphic encryption [52],
however, the efficiency of their approaches degrades rap-
idly when the size of the training data increases.

For model learning based on large-scale biomedical
sensing data, it is important that the training algorithms
scale well as the number of Patients increases. Most of
the aforementioned cryptographic solutions incur high
computation or communication load at the Patient side,
and thus cannot be directly applied to our scenario. We
address the scalability problem by decomposing the cen-
tralized optimization problem into subproblems such that
the computation cost per Patient does not greatly increase
with the number of Patients. Specifically, the decomposi-
tion algorithm we use is based on ADMM, which has
been previously used for decomposing support vector
machine (SVM) in [53]. Due to the decomposition, only
the average of locally optimal parameters are needed by
the mHealth server. Thus we can utilize a simple secure
summation protocol with low amortized computational
cost to protect private intermediate results. This paper is
an extension of its conference version [54], with a new
solution for vertical-partitioned healthcare data, more in-
depth explanations of our approach, and a more extensive
experimental evaluation.

7 CONCLUSION

In this paper, we have proposed a private scheme for learn-
ing a logistic regression model based on distributed bio-
medical sensing data. Our scheme enables mHealth users to
control their raw data and only share necessary intermedi-
ate results during the training process. We have further pro-
vided a solution to protecting the private information of
intermediate results during the aggregation process. Experi-
mental results on real-world datasets show that the
proposed approaches converge quickly and provide perfor-
mance closely to the optimal result. Our schemes have low
computational overhead for each user even when the num-
ber of users is large, and are thus practical for mHealth
monitoring scenarios. We have focused on the logistic
regression problem in this paper. However, our scheme
may be generalized to other classification problems (e.g.,
support-vector machine) in mHealth applications which
constitutes our future work.
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