
Practical Collaborative Learning for Crowdsensing
in the Internet of Things with Differential Privacy

Yuanxiong Guo and Yanmin Gong
School of Electrical and Computer Engineering

Oklahoma State University, Stillwater, OK 74078
Email: {richard.guo, yanmin.gong}@okstate.edu

Abstract—Machine learning is increasingly used to produce
predictive models for crowdsensing applications such as health
monitoring and query suggestion. These models are more accurate
when trained on large amount of data collected from different
sources. However, such massive data collection presents serious
privacy concerns. The personal crowdsensing data such as photos,
voice records, and locations is often highly sensitive, and once
being sent out to the collecting companies, falls out of the control
of the crowdsensing users who own it. This may preclude the
practice of transmitting all user data to a central location and
training there using conventional machine learning approaches.

In this paper, we advocate an alternative approach that leaves
data stored on the user side and learns a shared model by
coordinating local training of crowdsensing users in an iterative
process. Specifically, we focus on regularized empirical risk mini-
mization and propose an efficient scheme based on decomposition
that enables multiple crowdsensing users to jointly learn an
accurate learning model for a given learning objective without
sharing their private crowdsensing data. We exploit the fact
that the optimization problems used in many learning tasks are
decomposable and can be solved in a parallel and distributed
way by the alternating direction method of multipliers (ADMM).
Considering the heterogeneity of different user devices in practice,
we propose an asynchronous ADMM algorithm to speed up the
training process. Our scheme lets users train independently on
their own crowdsensing data and only share some updated model
parameters instead of raw data. Moreover, secure computation
and distributed noise generation are novelly integrated in our
scheme to guarantee differential privacy of the shared parameters
in the execution of the asynchronous ADMM algorithm. We
analyze the privacy guarantee and demonstrate the privacy-utility
trade-off of our privacy-preserving collaborative learning scheme
empirically based on real-world data.

I. INTRODUCTION

With the proliferation of smart devices that have built-in
sensors, Internet connectivity, and programmable computation
capability, the concept of crowdsensing, where individual de-
vices collectively sense, share, and analyze data to learn phe-
nomena of common interests, is gaining popularity and driving
the evolution of the Internet of things [1]. Although often used
for collecting and analyzing aggregate statistics from a group
of participants, crowdsensing can also perform more complex
tasks over the collected data via machine learning. For instance,
Google is collecting user input data in Gboard on Android to
improve Gboard’s query suggestion model [2].

It is well-known that machine learning models become more
accurate as the training data grows bigger and more diverse.
The current practice of combining data from different sources

or individuals is to send it to a central place (e.g., a cloud
datacenter) and then analyze it there. Although highly efficient,
such massive centralized collection of data from millions
of crowdsensing participants has raised several issues. First,
personal crowdsensing data such as photos, voice records,
and locations is often highly sensitive, and could leak a lot
of private information about the users. Storing such highly
sensitive data in a single place presents a large privacy risk
to attackers. Second, once the data is sent out to the collecting
companies which may keep it indefinitely, crowdsensing users
who actually own the data have no control of it. They can
neither delete the data nor restrict its usage. Third, the predic-
tive models learned from crowdsensing data are proprietary to
the collecting companies, and crowdsensing users have to send
queries to the companies later for using these models.

We investigate an alternative scheme based on collaborative
learning to address the aforementioned issues of centralized
collection and learning in crowdsensing. In our approach,
multiple crowdsensing users collaboratively train a learning
model under the coordination of a cloud server in an iterative
manner. Each user has a training dataset that is never uploaded
to the server. Instead, at each iteration of the training process,
each user locally trains a model based on its own dataset and
some shared information received from the cloud server, and
then only shares some updated model parameters with the
server. At the end of the iterative process, both users and the
server would obtain the accurate learning model. Our approach
follows the principle of focused collection recommended by
the 2012 White House report on privacy of consumer data [3].
Security and privacy risks are also reduced in our approach
through limiting the attack surface to only users, rather than
users and the cloud server.

Specifically, we focus on regularized empirical risk mini-
mization [4], which have been widely adopted in many learning
applications. We exploit the fact that the regularized empirical
risk minimization (ERM) problems can be decomposed based
on the alternating direction method of multipliers (ADMM)
and then iteratively solved in a parallel and distributed way by
users using their local datasets. Therefore, the model could
be learned without the need for direct access to the raw
training data, providing some privacy for the users. However,
there are two challenges in using the ADMM. First, user
devices are heterogeneous in their computation capabilities. It

2018 IEEE Conference on Communications and Network Security (CNS)

978-1-5386-4586-4/18/$31.00 ©2018 IEEE

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on June 28,2021 at 15:26:30 UTC from IEEE Xplore. Restrictions apply.

could be very slow for the cloud server to wait for updates
from all users before proceeding to the next iteration. Second,
during the iterative process, users needs to send their updated
model parameters to the server, which may leak some private
information about their datasets. We tackle the first challenge
by adopting an asynchronous ADMM algorithm to solve the
optimization problem, which does not require the server to
receive all user updates before proceeding and thus speeds
up the iterative process. Moreover, a differentially private
parameter sharing mechanism is designed in the asynchronous
algorithm to tackle the second challenge.

In summary, the main contributions of this paper are as
follows.
• We propose an alternative approach to centralized data

collection for privacy-preserving regression learning over
crowdsensing data. Our approach enables multiple crowd-
sensing users to jointly learn an accurate model without
sharing their private datasets.

• Considering the heterogeneity of user devices, we de-
velop an asynchronous distributed ADMM algorithm to
enable efficient collaborative learning. The proposed asyn-
chronous algorithm can reduce the waiting time of the
server to proceed to the next iteration and greatly speed
up the iterative process.

• We design a differentially private parameter sharing mech-
anism based on secure computation and distributed noise
generation to limit the private information leakage during
the execution of the asynchronous ADMM algorithm in a
rigorous way.

• We conduct an extensive empirical evaluation of the pro-
posed approach based on real-world data to demonstrate
its effectiveness.

The rest of the paper is organized as follows. Section II gives
some background and preliminaries on ADMM and differential
privacy. Section III describes the system architecture, threat
model, design goals, and gives an overview of the proposed
approach used in this paper. The collaborative learning scheme
based on asynchronous distributed ADMM is presented in
Section IV. The differentially private parameter sharing mech-
anism to minimize the indirect information leakage during
the execution of the asynchronous algorithm is illustrated in
Section V. Evaluation results based on real-world data are
described in Section VI, and related work is reviewed in
Section VII. Finally, Section VIII gives the conclusion of this
paper.

II. BACKGROUND AND PRELIMINARIES

A. Alternating Direction Method of Multipliers

The ADMM is an algorithm suitable for distributed opti-
mization and has been widely used in applied statistics and
machine learning [5]. Problems that can be solved by ADMM
have the following form:

min
x,z

f(x) + g(z)

s.t. Ax+Bz = c,
(1)

where the objective function is separable over two sets of
variables x and z. The augmented Lagrangian of the above
problem is

Lρ(x, z, y) := f(x) + g(z) + yT (Ax+Bz − c)
+ (ρ/2)‖Ax+Bz − c‖22, (2)

where ρ > 0 is the penalty parameter and y is the dual variable
corresponding to the constraint Ax+Bz = c. At each iteration
k, ADMM solves (1) by the following steps:

xk+1 := argmin
x

Lρ(x, z
k, yk), (3)

zk+1 := argmin
z

Lρ(x
k+1, z, yk), (4)

yk+1 := yk + ρ(Axk+1 +Bzk+1 − c). (5)

Similar to dual descent algorithm, it consists of x-minimization
step (3), z-minimization step (4), and a dual variable update
(5). However, different from dual descent algorithm, in ADMM
x and z are updated in an alternating or sequential fashion,
which allows for decomposition when f or g are separable. The
convergence of ADMM can be proved under very mild assump-
tions, which generally hold in practice. Moreover, ADMM
converges to modest accuracy, which is sufficient for many
applications, within a few tens of iterations in many cases [5].

B. Differential Privacy

Differential privacy [6] was originally proposed for the
setting where a trusted data curator with a database containing
records from multiple individuals publishes perturbed statistics
derived from the database using a randomized mechanism. For-
mally speaking, a randomized mechanism M satisfies (ε, δ)-
differential privacy if for all adjacent databases D,D′ ∈ D
that differ in exactly one record, and all possible output subset
O ⊆ range(M),

Pr[M(D) ∈ O] ≤ eε Pr[M(D′) ∈ O] + δ. (6)

Specifically, consider any function g that takes as input a
database D ∈ D and outputs a numeric vector o ∈ Rd. The
Gaussian Mechanism gives a general method for generating a
privacy-preserving approximation to the function g by adding
zero-mean Gaussian noise to each of the d coordinates of the
output vector o. Formally, we have the following theorem:

Theorem 1. Let ε ∈ (0, 1) and δ > 0 be arbitrary. Then the
Gaussian Mechanism which adds Gaussian noise N (0, σ2) to
each coordinate of the function output is (ε, δ)-differentially
private if the scale of the Gaussian noise satisfies

σ ≥
√

2 ln(1.25/δ)
∆2(g)

ε
. (7)

Here ∆2(g) is the `2-sensitivity of the function g defined as

∆2(g) := max
D,D′

‖g(D)− g(D′)‖2, (8)

where D and D′ are any two adjacent databases in D which
differ in only one record.

2018 IEEE Conference on Communications and Network Security (CNS)

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on June 28,2021 at 15:26:30 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. The crowdsensing system model.

Due to its robustness against adversarial background knowl-
edge, differential privacy has been increasingly accepted as the
de facto standard for private data analysis and deployed in some
real-world scenarios [7], [8]. Moreover, differential privacy has
some useful properties. First, it is immune to post-processing,
which is formalized below:

Theorem 2 (Post-processing). Suppose a mechanism M :
D → R preserves (ε, δ)-differential privacy. Then for any func-
tion h : R → R′, the (functional) composition h◦M : D → R′
also preserves (ε, δ)-differential privacy.

Second, it is easy to combine several differentially private
mechanisms as shown in the following composition rule:

Theorem 3 (Sequential Composition). Let M1 : D → R1

be an (ε1, δ1)-differentially private mechanism, and let M2 :
D → R2 be an (ε2, δ2)-differentially private mechanism. Then
their combination, defined to be M1,2 : D → R1×R2 by the
mapping M1,2(D) = (M1(D),M2(D)) is (ε1 + ε2, δ1 + δ2)-
differentially private.

III. SYSTEM MODELS AND SOLUTION OVERVIEW

In this section, we first present the system architecture for
privacy-preserving collaborative learning and then describe the
threat model and design goals we aim to achieve in this paper.

A. System Architecture

We consider a crowdsensing system consisting of a cloud
server and a set of users [n] := {1, . . . , n} as depicted in Fig. 1.
Each user i ∈ [n] in the system has a local sensing dataset
Di = {(xij , yij) ∈ X × Y : ∀j ∈ [Ji] := {1, . . . , Ji}} stored
on its device, where mi is the total number of training samples
in the dataset, xij ∈ X is the d-dimensional feature vector of
the j-th training sample, and yij ∈ Y is the corresponding
label of the j-th training sample. The sets X ⊆ Rd and Y ⊆ R
are the feature space and label space, respectively. For each
training sample (xij , yij), we assume without loss of generality
that ‖xij‖2 ≤ 1 since any feature vector can be normalized to
enforce this assumption.

The cloud server coordinates the collaborative learning
among the users in the system. Each user can communicate
directly with the server over a public network. The goal of
the system is to learn a predictive model h from the collective

sensing dataset of all users ∪ni=1Di that predicts the label y
given a feature vector x. Consider a linear predictor h with a
tunable vector w, and h(x;w) := wTx denotes the predicted
label given a feature vector x. We also define a loss function
l that measures the difference between the observed label and
the predicted label. Similar to [4], we assume that the loss
function l(·) is convex and differentiable with |l′(·)| ≤ 1. As
a common method in statistical learning [9], a wide range of
learning tasks can be represented by choosing specific forms
of l, and then finding the optimal parameter w∗ to minimize
the regularized empirical risk over the collective dataset:

min
w

n∑
i=1

Ji∑
j=1

l(wTxij , yij) + βr(w), (9)

where r(w) is the regularizer (such as `1-norm and `2-
norm) to prevent over-fitting, and β > 0 is a parameter
which controls the weight of the regularizer. Some common
examples of learning tasks include linear regression where
l(h(xij ;w), yij) = (yij − xTijw)2, yij ∈ R, logistic re-
gression where l(h(xij ;w), yij) = log

(
1 + exp

(
−yijxTijw

))
,

yij ∈ {−1, 1}, and support vector machines where
l(h(xij ;w), yij) = max{0, 1− yijxTijw}, yij ∈ {−1, 1}.

B. Threat Model

We assume the following threat model. In the system, the
cloud server is assumed to be honest-but-curious. That means
the server will honestly follow the designed protocol and make
the correct computations. However, it is curious about the user
private sensing data and may infer it from the shared messages
during the execution of the protocol. The cloud can also have
arbitrary auxiliary information, which can be obtained from
public datasets or personal knowledge about a specific user.
There might exist a passive outside attacker who can eavesdrop
all shared messages in the execution of the protocol, but it will
not actively inject false messages into or interrupt the message
transmission in the protocol.

All users in the system are assumed to be honest-but-curious
as well. However, some of them may collude with the server to
infer private information about a specific user. In this paper, we
do not consider malicious users who, for instance, may launch
data pollution attack by lying about their private datasets or
returning the incorrect computed results to mess up the learning
process. It will be left as our future work.

C. Design Goal

Our goal is to design a scheme that enables multiple users
to jointly learn an accurate machine learning model for a
given learning task while preserving differential privacy of their
sensing datasets. Moreover, the communication and compu-
tation overhead should be kept low considering the resource
constraints of users in practice.

D. Solution Overview

To address the privacy concern of users about exposing
their private datasets during the collaborative learning process

2018 IEEE Conference on Communications and Network Security (CNS)

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on June 28,2021 at 15:26:30 UTC from IEEE Xplore. Restrictions apply.

while obtaining the accurate learning model, in this paper we
adapt tools from ADMM, secure computation, and differential
privacy to develop a novel approach with high accuracy and
rigorous privacy guarantee. Our proposed approach consists
of two essential components: an asynchronous distributed
ADMM algorithm to solve the optimization problem (9) that
enables collaborative learning without directly sharing private
user datasets, and a differentially private parameter sharing
mechanism to limit the indirect information leakage during the
execution of the asynchronous algorithm.

IV. COLLABORATIVE LEARNING BASED ON DISTRIBUTED
AND ASYNCHRONOUS ADMM

To apply ADMM for collaborative learning, we first refor-
mulate (9) into the following equivalent consensus problem:

min
w0,wi,∀i∈[n]

∑
i∈[n]

∑
j∈[Ji]

l(wTxij , yij) + βr(w0) (10a)

s.t. wi = w0, i = 1, . . . , n, (10b)

where wi is the i-th user’s local copy of the model to be
learned, and all of them need to reach consensus with the
global copy of the model w0 at the server side. We define
l(Di;wi) :=

∑
j∈[Ji]

l(wTxij , yij) as the loss function of the
i-th user given its local model parameter wi.

Problem (10) is in the standard form and can be efficiently
solved by the ADMM algorithm (3)–(5) in the following
parallel and distributed way:

wk+1
0 := argmin

w0

βr(w0) +
nρ

2

∥∥∥w0 − wk − λ
k
∥∥∥2

2

wk+1
i := argmin

wi

l(Di;wi) +
ρ

2

∥∥wi + λki − wk+1
0

∥∥2

2
,∀i

λk+1
i := λki + wk+1

i − wk+1
0 ,∀i

where (λi,∀i) are the scaled dual variables corresponding to
the constraints (10b), the overline denotes the average (over i =

[n]) of a vector (e.g., wk = (1/n)
∑
i w

k
i , λ

k
= (1/n)

∑
i λ

k
i),

and k is the iteration number. From the above algorithm, we
can derive the following synchronous protocol for collaborative
learning: each user optimizes its local model in parallel based
on its local dataset and the received global model from the
server, and then sends the updated model to the server; in
turn, the server updates the global model parameter by driving
the local parameters into consensus, and then distributes the
updated value back to the users, and the process re-iterates.
With this method, each user’s raw dataset is kept locally
and not uploaded to the server, preventing direct information
leakage. However, updates in the above distributed ADMM
algorithm have to be synchronized in the sense that the server
has to wait for all the users to finish their local updates
before it can proceed to the next iteration. In practice, the
users could have different delays because of heterogeneity
in proceeding speed and training dataset, and in the above
synchronous protocol the server needs to wait for the slowest
user to finish its update before starting the next iteration,

leading to the straggler problem [10]. Moreover, if some users
get disconnected and drop out from the system temporarily,
the synchronous algorithm has to stop immediately.

To speed up the convergence of the algorithm under hetero-
geneous environments and make it more robust to individual
user failure, we need to allow asynchronous updates, where
the server starts to perform its update immediately upon re-
ceiving updates from only a subset of users. Our asynchronous
distributed algorithm is inspired by the recent development of
asynchronous distributed algorithms [11] and works as follows.

Initialization. The server is responsible for updating the
global model w0, while each user i is responsible for updating
its local model wi and dual variable λi. The server keeps an
iteration counter k which starts from 0 and is increased by 1
after each w0 update. Similarly, each user keeps an iteration
counter ki which starts from 0 and is increased by 1 after
each λi update. As the proposed algorithm is asynchronous,
the counters k and ki,∀i are updated independently. Denote
by wkii and λkii the values of wi and λi when the i-th user is
at iteration ki, respectively, and wk0 the value of w0 when the
server is at iteration k.

Step 1: w0-update by the server. At iteration k, the server
needs to wait for the users’ (wi, λi) updates before it can
update the global model w0. Two preconditions are imposed
here for the server to update. The first condition is called
partial barrier, where the server only needs to wait for a
minimum of s ∈ [1, n] updates from users. Let Ωk be the set
of users whose updates are received by the server and during
iteration k. So this condition requires that |Ωk| ≥ s. The second
condition is called bounded delay, where update from every
user has to be processed by the server at least once every τ ≥ 1
iterations. Let τi be the variable kept by the server to count the
delay for each user i. For each iteration k, if i ∈ Ωk, τi is set
to be zero. Otherwise, τi is increased by one. Therefore, the
second condition is not satisfied as long as there exists a user
i ∈ [n] \Ωk such that τi ≥ τ − 1 at any iteration k. Here both
s and τ are design parameters of our asynchronous algorithm.
It is easy to see that the synchronous ADMM algorithm is
a special case of our asynchronous algorithm with s = n or
τ = 1.

When both conditions are met, the server updates w0 based
on the updated values {(ŵi, λ̂i)}i∈Ωk

received from the users
in the following way:

wk+1
0 := argmin

w0

βr(w0) +
nρ

2

∥∥∥w0 − wk − λ
k
∥∥∥2

2
, (11)

where wki and λki are the most recent updates from user i
at the server until iteration k. Specifically, for users i ∈ Ωk,
wki = ŵi and λki = λ̂i. For the other users i ∈ [n]\Ωk, no new
updates are received in this iteration and hence wki = wk−1

i

and λki = λk−1
i . After that, the iteration counter of the server

k is increased by 1, and the updated wk+1
0 are sent back to

only the users in Ωk. The server then waits until satisfying the
two preconditions again to move to the next iteration.

2018 IEEE Conference on Communications and Network Security (CNS)

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on June 28,2021 at 15:26:30 UTC from IEEE Xplore. Restrictions apply.

Step 2: (wi, λi)-update by the i-th user. At iteration ki, based
on the updated value ŵ0 received from the server, the user i
updates its local model parameter wi and dual variable λi as

wki+1
i := argmin

wi

l(Di;wi) +
ρ

2

∥∥∥wi + λkii − ŵ0

∥∥∥2

2
, (12)

λki+1
i := λkii + wki+1

i − ŵ0. (13)

The new local model wki+1
i and dual variable λki+1

i are then
sent to the server, and the iteration counter ki is increased by
1. The user then waits for the next w0-update from the server
before updating again.

V. DIFFERENTIALLY PRIVATE PARAMETER SHARING

With the protocol derived from the above asynchronous algo-
rithm, the dataset Di is kept locally at each user i without being
shared with others. Therefore, it can prevent direct information
leakage. However, the shared parameters wki and λki sent to the
server by the users i ∈ Ωk at each iteration k are computed
from its private dataset Di and may lead to privacy leakage
as demonstrated in model inversion attack [12]. Therefore, we
need to preserve privacy of these shared parameters. The goal
of this section is to achieve differential privacy of the shared
parameters in the asynchronous distributed ADMM algorithm
by sanitizing them before they leave the user. Note that the
dual variables λki are derived from wki based on (13) without
further querying user datasets. According to Theorem 2, it is
straightforward to preserve the differential privacy of λki by
using the noisy w̃ki+1

i in (13) if we can guarantee differential
privacy of wki . Therefore, in the following, we will restrict our
focus to wki in a specific iteration k.

A straightforward approach to achieve differential privacy
in our setting would be through randomized perturbation,
where each user i ∈ Ωk adds enough random noises into
its shared parameters wki directly at each iteration k before
sending them out such that the server would not be able to
learn much about its individual training samples in Di from
the received parameters. This approach is also called local
differential privacy [7] in literature. However, since the server
is not trusted in our setting, the noises added by each individual
user must be large enough to satisfy differential privacy, which
may accumulate too much noise in the final aggregate results.

To tackle this issue, we observe that the server only needs
to know the average of the local models wk in (11) for global
model updating at each iteration. Furthermore, we have

wk =
∑
i∈[n]

wki
n

=
∑
i∈[n]

wk−1
i + ∆wki

n
= wk−1 +

∑
i∈Ωk

∆wki
n

,

where ∆wki := wki − w
k−1
i represents the update of the local

model of user i ∈ Ωk during iteration k, while the local models
of all other users i ∈ [n]\Ωk do not change during iteration k.
Therefore, the server only needs to know the sum of the updates
of the local model parameters

∑
i∈Ωk

∆wki from all users in
Ωk to proceed at each iteration rather than individual values of
∆wki ,∀i ∈ Ωk. Based on this observation, if we can have an

Fig. 2. Basic protocol for efficient secure aggregation in asyncrhonous setting.

efficient secure aggregation protocol such that the server can
only obtain the sum of the updates instead of the individual
values, the noise added by each user can be much smaller,
improving the utility of the aggregated results. In the following,
we will design an efficient secure aggregation protocol based
on secrete sharing and then combine this protocol with a
distributed noise generation scheme to guarantee differential
privacy of shared parameters while achieving high utility.

In the remainder of this section, we first describe the secure
aggregation protocol in our asynchronous setting such that
the cloud server learns nothing but the noisy sum. Then we
describe how each participating user should choose the noise
distribution so that the differential privacy of an individual par-
ticipating user is protected even when a subset of participants
may drop out or collude with the cloud server.

A. Secure Aggregation in Asynchronous Setting

For our asynchronous setting, a secure aggregation protocol
should be able to (1) hide individual user data, (2) recover
the sum for an uncertain set of users in each round, and (3)
incur low communication cost for participating users. Our basic
idea to provide a secure aggregation protocol that satisfies the
above requirements is to utilize secret sharing protocols in
a communication-efficient way. Denote by mi the plaintext
message (i.e., model parameters) of user i that needs to be
shared with the server. Our proposed protocol involves minimal
interactions between the users and the server during each
iteration k of the asynchronous algorithm, which is critical
to improve the performance of the asyncrhonous setting, and
consists of the following two main steps:
• Encryption uploading: Users in Ωk upload their own

encrypted message ci, i ∈ Ωk to the server.
• Decryption: The server decrypts the sum of the messages

sent by users in Ωk.
The basic idea of the protocol is to protect the message

mi of user i by hiding it with a random number si in the
plaintext space, i.e., ci = mi + si. However, the challenge
here is how to remove the random number si from the final
ciphertext at the server part. To this end, we require that all
the si will sum up to 0, i.e.,

∑
i∈Ωk

si = 0, which enables
the cloud server to recover

∑
i∈Ωk

mi but prevents it from
recovering each individual message mi. However, each user

2018 IEEE Conference on Communications and Network Security (CNS)

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on June 28,2021 at 15:26:30 UTC from IEEE Xplore. Restrictions apply.

needs to communicate with each other in order to generate such
secrets si to achieve this, which is quite inefficient in terms
of communication overhead. To reduce the communication
overhead, we introduce a pseudorandom function (PRF) F
here. The PRF F takes a random seed seedi,j that both
users agree on during initialization and the iteration number
k, and outputs a different pseudorandom number F (seedi,j , k)
at each iteration. User i could calculate the shared secret sij
without interacting with user j in each iteration as long as they
both use the same seed and iteration number, and thus each
user could calculate si independently. This procedure greatly
reduces the amortized communication overhead of our protocol
over multiple iterations as in our algorithm.

The detailed protocol is depicted in Fig. 2. All user needs
to go through an initialization step upon enrollment which
involves pairwise communications with all other users (which
can be facilitate by the server) to generate a random seed
seedij . After this initialization step, all enrolled users could
upload their messages through the encryption uploading step.
In each round k, only a subset of users would upload their
messages. Users send a notification signal to the server once
they are ready to upload their updated shared parameters, and
the server waits until receiving notifications from enough users.
The server then broadcasts the information Ωk to all users in
Ωk who will upload their messages in this iteration k. User
i ∈ Ωk would first compute its secret at the current iteration
as follows:

si =
∑

j∈Ωk\{i}

(sij − sji) , (14)

where sij = F (seedi,j , k) is a secret known by both user i
and j. User i could then generate the encrypted message for
mi as ci = mi + si. In the decryption step, the server receives
ci from users in Ωk. The server could then recover the sum of
plaintext messages from users in Ωk as follows:∑

i∈Ωk

ci =
∑
i∈Ωk

mi +
∑
i∈Ωk

∑
j∈Ωk\{i}

(sij − sji)

=
∑
i∈Ωk

mi.
(15)

Note that in the above protocol, we assume all active users in
Ωk have stable connection to the cloud server. In some cases,
the users may not maintain connections during the protocol.
We could modify our protocol to address user churns during
the interaction process. The basic idea is to use (t, n)-threshold
secret sharing (t < n) [13] to improve the robustness of our
protocol, so that even some of the users are offline, we could
still recover the missing information. When users are uploading
their encrypted message to the server, they also calculate secret
shares of sij and encrypt each share of sij with the encryption
key of a user in Ωk. These encrypted shares are sent to the
server together with the ciphertext ci. When the server needs to
recover ci, it needs all the sij , i, j ∈ Ωk, and thus it requests the
secret shares for the missing sij from remaining users. As long
as there are at least t remaining users, they could help the server
recover sij and decrypt

∑
i∈Ωk

mi. This improves robustness

of our protocol, but brings additional communication cost. In
practice we need to consider the probability for user dropout
in order to decide whether it is beneficial to adopt the modified
protocol.

B. Distributed Noise Generation

The cryptographic construction of Section V-A ensures that
the cloud server learns nothing other than what it already
knows and the sum of the shared parameters revealed at each
iteration. However, individual privacy can still be violated
indirectly as the aggregate sum may leak information about
a user’s private dataset. In this section, we show how to
guarantee (ε, δ)-differential privacy of the aggregate sum in
the collaborative learning process.

Note that
∑
i∈Ωk

∆wki is a function of user datasets
∪i∈Ωk

Di through optimization problems (12). To add appropri-
ate scales of noise, we need to estimate the sensitivities of the
optimal solutions to these optimization problems. Specifically,
we have the following lemma:

Lemma 1. The `2-sensitivity of the optimal solution wki+1
i

with respect to dataset Di in (12) is 2/ρ.

Proof. Let Di and D′i be two datasets that differ in the value
of the j-th sample. Moreover, we let G(wi) = l(Di;wi) +

(ρ/2)
∥∥∥wi + λkii − ŵ0

∥∥∥2

2
, g(wi) = l(D′i;wi)− l(Di;wi), w∗i =

argminwi
G(wi), and (w′i)

∗ = argminwi
G(wi) + g(wi). We

observe that due to the convexity of l(·) and ρ-strong convexity

of (ρ/2)
∥∥∥wi + λkii − ŵ0

∥∥∥2

2
, G(wi) is ρ-strongly convex. More-

over, G(wi) + g(wi) is also ρ-strongly convex. Note that both
G(wi) and g(wi) are differentiable. According to the Lemma
7 from [4], we have

‖w∗i − (w′i)
∗‖2 ≤

1

ρ
max
wi

‖∇g(wi)‖2 (16)

Since ‖∇g(wi)‖2 ≤ 2 according to our assumptions on the
loss function l(·), the conclusion follows.

From the above lemma, it is easy to find that the `2-
sensitivity of

∑
i∈Ωk

∆wki is also 2/ρ. Therefore, based on this
fact and Theorem 1, it is sufficient to preserve (ε, δ)-differential
privacy of shared parameters

∑
i∈Ωk

∆wki at iteration k by
adding Gaussian noise N (0, σ2) to the sum of local model
updates with σ ≥

√
2 ln(1.25/δ)(2/ρε). In our setting, the

users do not fully trust the cloud server. Therefore, we cannot
rely on the cloud server to add noise to the sum

∑
i∈Ωk

∆wki .
Instead, we must add noise before the cloud server can decrypt
the sum. It is also problematic to have a single user in Ωk to
add the noise because this designated user can learn the true
sum, violating other users’ privacy. Moreover, users may not
trust each other and some subset of users may even collude
with the cloud server in real-world settings.

We propose to let the users ensure the differential pri-
vacy of their intermediate results by themselves. Each user
i ∈ Ωk involved in the current iteration would add noise to
its submitted intermediate result ∆wki before participating in

2018 IEEE Conference on Communications and Network Security (CNS)

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on June 28,2021 at 15:26:30 UTC from IEEE Xplore. Restrictions apply.

the secure aggregation protocol as described in Section V-A.
Assume there are at least γ percentage of honest users in Ωk
in each iteration. Then these honest users may add a small
amount of noise as long as the total noise in the final sum
is large enough to protect individual privacy. Specifically, to
generate a total noise of N (0, σ2) in the sum, each user
should independently add a noise of N (0, σ2/γ|Ωk|) to their
individual results ∆wki before applying the secure aggregation
protocol in Section V-A. However, since the number of the
participating users |Ωk| is not known beforehand, each user
can add a noise of N (0, σ2/γs) since |Ωk| ≥ s as designed in
the asynchronous ADMM. It is straightforward to see that the
above distributed noise generation scheme can ensure that the
final sum will contain sufficient noise from the honest users so
as to guarantee differential privacy, while keeping the error of
the sum to be small. Formally, we have

Theorem 4. Our approach achieves (ε, δ)-differential privacy
at each iteration k for all users in Ωk when there is at least
γ percentage of honest users following the protocol.

As a comparison, we analyze the utility improvement of
combining secure aggregation with differential privacy in our
approach. Suppose we do not utilize the secure aggregation
protocol so that each user’s individual result is revealed to
the cloud server in each iteration. Therefore, to guarantee
(ε, δ)-differential privacy, each user needs to independently add
a noise of N (0, σ2

i) to its intermediate result, where σi ≥√
2 ln(1.25/δ)(2/ρε), according to Lemma 1. Therefore, the

sum of the intermediate results from all users in Ωk would have
a noise ofN (0,

∑
i∈Ωk

σ2
i), whose standard deviation is

√
|Ωk|

times larger than that of our proposed approach. Therefore, our
approach can obtain significant utility improvement compared
to the local differential privacy approach when the number of
participating users is large.

The overall procedures of the server and the users are
summarized in Algorithm 1 and Algorithm 2, respectively.

VI. EVALUATION RESULTS

In this section, we evaluate the performance of our proposed
approach on a real-world dataset for logistic regression analy-
sis. All experiments are conducted in MATLAB on a computer
with 2.5 GHz Intel Core i7 CPU and 16 GB RAM.

A. Experimental Setup

Dataset and learning task. The dataset we use is the
Adult dataset from the UC Irvine Machine Learning Repository
[14], which contains demographic information about 48, 842
individuals. The classification task is to determine whether
the annual income of a person is below or above 50K based
on 14 attributes, namely, age, workclass, fnlwgt, education,
education-num, marital-status, occupation, relationship, race,
sex, capital-gain, capital-loss, hours-per-week, and native-
country. For data preprocessing, we first remove all entries
with missing values in this dataset. Then for binary categorial
attributes, we set them to be 0 or 1. For the remaining
categorical attributes that have more than 2 possible values,

Algorithm 1 Procedure at the server
1: Initialization: choose an initial value of w0 and broadcast

it to all the users. Set w0 ← 0, λ
0 ← 0, k ← 1 and

τi ← 0,∀i ∈ [n];
2: repeat
3: repeat
4: wait;
5: until receive encrypted updates from a set of users Ωk

such that |Ωk| ≥ s and maxi∈[n]\Ωk
τi < τ − 1;

6: for user i ∈ Ωk do
7: τi ← 0;
8: end for
9: for user i ∈ [n] \ Ωk do

10: τi ← τi + 1;
11: end for
12: decrypt

∑
i∈Ωk

∆wki and
∑
i∈Ωk

∆λki through the se-
cure aggregation protocol in Section V-A;

13: wk ← wk−1 +
∑

i∈Ωk
∆wk

i

n ;

14: λ
k ← λ

k−1
+

∑
i∈Ωk

∆λk
i

n ;
15: update wk+1

0 by (11);
16: broadcast wk+1

0 to all the users in Ωk;
17: k ← k + 1;
18: until stopping criteria is satisfied;

Algorithm 2 Procedure at the i-th user
1: Initialization: set λ0

i ← 0 and ki ← 0;
2: repeat
3: repeat
4: wait;
5: until receive update ŵ0 from the server;
6: update wki+1

i by (12) and obtain w̃ki+1
i := wki+1

i +
N (0, σ2

k/γs) by noise sampling;
7: compute ∆wki+1

i ← w̃ki+1
i − w̃kii ;

8: compute ∆λki+1
i ← w̃ki+1

i − ŵ0;
9: send the encrypted (∆wki+1

i ,∆λki+1
i) back to the

server through the secure aggregation protocol in Sec-
tion V-A;

10: ki ← ki + 1;
11: until stopping criteria is satisfied;

we transform these attributes into binary vectors by one-hot
encoding. We next normalize the other numeric attributes into
the range of [0, 1]. Finally, each sample is normalized to ensure
that its norm is at most 1. After these preprocessing, our
dataset now has 40000 samples, each having a 105-dimensional
feature vector and a label with values in {−1, 1}. Among these
samples, 30000 samples will be used as the training dataset
while the remaining 10000 samples will be used as the testing
dataset. We focus on using logisitc regression as the learning
task to predict the annual income based on the other attributes
of a person using the above dataset. The loss function used

2018 IEEE Conference on Communications and Network Security (CNS)

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on June 28,2021 at 15:26:30 UTC from IEEE Xplore. Restrictions apply.

1 50 100 150 200 250 300 1000

Number of Users n

0.75

0.76

0.77

0.78

0.79

0.8

0.81

0.82

0.83

0.84

0.85

A
v
e

ra
g

e
 T

e
s
ti
n

g
 A

c
c
u

ra
c
y

Fig. 3. Centralized vs. Local Approaches.

here is

l(h(xij ;w), yij) = log
(
1 + exp

(
−yijxTijw

))
. (17)

The regularizer used here is `2-norm, i.e., r(w) = (β/2)‖w‖22.
With a trained logistic model w, given an attribute vector x,
we predict the label y to be 1 if xTw ≥ 0 and −1 otherwise.
The accuracy of a logistic model is measured by its success
rate, which is the fraction of testing samples that are correctly
classified using the trained model w.

Parameter setting. In all experiments, the weight of the
regularizer β is tuned to be the optimal value. We vary the
number of users n between 1, 10, 50, 100, 150, 200, 300, 1000.
The local training dataset of each user is randomly initialized
and has the same size.

Baseline approaches. We compare our approach with the
following two baseline approaches:
• Centralized approach: In this approach, all sensing

datasets from users are collected at the server for analysis.
Obviously, this approach will have the best performance
of the model accuracy, but it does not protect user privacy
and is privacy-oblivious.

• Local approach: Each individual user trains the model
only based on its local dataset without collaboration in
this approach. Although user privacy is protected in this
approach, its model accuracy could be lower than that of
the centralized approach.

B. Simulation Results

Collaborative learning benefits. In this part, we first eval-
uate the benefits of collaborative learning by comparing the
centralized approach and local approach. As shown in Fig. 3,
as we increases the number of users from 1 (corresponding
to the centralized approach) to 1000, the size of the dataset
at each user decreases and the average testing accuracy of the
obtained model reduces. Therefore, collaborative learning can
improve the accuracy of the learning model by training over a
larger dataset.

Privacy-accuracy trade-off. Next, we evaluate the effects
of different values of privacy parameters ε on the accuracy

0.01 0.02 0.05 0.1 0.2 0.5 1

Privacy Budget

0.75

0.76

0.77

0.78

0.79

0.8

0.81

0.82

0.83

0.84

0.85

A
v
e
ra

g
e
 T

e
s
ti
n
g
 A

c
c
u
ra

c
y

Our Approach

Centralized

Local

Fig. 4. Accuracy of our approach for different privacy budget with n = 100
and δ = 10−3. The accuracy of centralized and local approaches are plotted
for comparison.

of the collaborative learned model when the number of users
n = 100, algorithm parameters s = 100, total number of
master iterations T = 20, γ = 1, and δ = 10−3. In practice,
participants can choose the values for these meta-parameters
by training on a calibration dataset, e.g., a public dataset
that has no privacy implications. Given the randomized nature
of our proposed differentially private algorithm, we run all
simulations 100 times to compute the average results. Fig. 4
shows the trade-off between accuracy and privacy. The x-axis
represents the privacy budget ε and the y-axis denotes the
accuracy of the obtained global model on the testing dataset.
As expected, a larger ε value results in higher accuracy while
providing lower differential privacy guarantee. However, our
proposed scheme can achieve almost the same results of the
centralized approach and outperform the local approach when
ε is reasonably large (e.g., 0.1 in our simulations). Hence
our proposed approach can achieve high accuracy without
sacrificing too much in privacy guarantee.

VII. RELATED WORK

The privacy issue of crowdsensing has been investigated in
the literature. A large number of existing solutions [15], [16],
[17] focus on simple aggregate queries such as COUNT ans
SUM in crowdsensing applications. However, none of these
methods apply to our problem, as learning often involves
solving a complex optimization problem, which is much more
challenging than COUNT/SUM queries and their derivatives.
A few work has considered privacy-preserving learning in
crowdsensing. For instance, Liu et al. [18] consider privacy-
preserving collaborative learning for the mobile setting and
design a system based on sensing data perturbation to preserve
the privacy of mobile users. Gong et al. [19] study the
application of mobile health monitoring and propose a privacy-
preserving scheme based on distributed optimization and se-
cure multi-party computation. However, these solutions do not
use the rigorous notation of differential privacy as their privacy-
preserving goal. Perhaps the most related work to ours is [20],
where the authors propose a general framework for machine

2018 IEEE Conference on Communications and Network Security (CNS)

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on June 28,2021 at 15:26:30 UTC from IEEE Xplore. Restrictions apply.

learning with smart devices from crowdsensing data. The key
idea of their work is to utilize stochastic gradient descent
(SGD) to design a distributed learning algorithm and Laplace
mechanism to achieve differential privacy during parameter
sharing. Gradient and subgraident methods such as SGD,
although computationally simple at each user, generally require
too many iterations (and hence communications) to converge
[21], which is not feasible in cases where communication is
expensive for participating users such as mobile devices. In
comparison, our distributed algorithm based on ADMM often
converges to good accuracy within a few tens of iterations in
statistical and machine learning problems and is more suitable
for communication-constrained scenarios. Moreover, by using
ADMM, the overall regularized ERM problem is decomposed
into multiple smaller problems, which can then be solved by
each individual user based on their own optimal solvers.

Our work is also related to the literature of privacy-
preserving multi-party machine learning, which is attracting
increasing attention in the big data era. Techniques from
secure multi-party computation and homomorphic encryption
have been developed for specific learning tasks such as lin-
ear regression [22], [23]. However, such techniques typically
involve high computation and communication overhead and
are not suitable for crowdsensing where user devices could
be resource-constrained. ADMM-based approaches [24], [25]
have also been developed in this setting, however they cannot
protect the differential privacy of the learning results and only
use synchronous ADMM. Differential privacy has also been
applied to complex learning tasks such as deep learning [26],
[27]. These problems or solutions are orthogonal to ours that
focuses on ERM.

VIII. CONCLUSION

This paper focuses on privacy-preserving collaborative learn-
ing for crowdsensing. We have proposed a new distributed
asynchronous learning scheme based on ADMM with rigorous
privacy guarantee. Our methodology works for many popular
machine learning models that fit into the regularized ERM
framework and preserves the differential privacy of crowd-
sensing users’ data while achieving high accuracy of the
resulting model. With the proposed approach, users can enjoy
the benefits of crowdsensing without giving up their privacy.
In the future, we plan to extend the proposed methodology to
more complex learning tasks such as deep learning and multi-
task learning.

REFERENCES

[1] R. K. Ganti, F. Ye, and H. Lei, “Mobile crowdsensing: current state and
future challenges,” IEEE Communications Magazine, vol. 49, no. 11,
2011.

[2] B. McMahan and D. Ramage, “Federated learning: Collaborative
machine learning without centralized training data,” Google Research
Blog, April 2017. [Online]. Available: https://research.googleblog.com/
2017/04/federated-learning-collaborative.html

[3] White House Report, “Consumer data privacy in a networked world: A
framework for protecting privacy and promoting innovation in the global
digital economy,” Journal of Privacy and Confidentiality, vol. 4, pp. 95–
142, 2012.

[4] K. Chaudhuri, C. Monteleoni, and A. D. Sarwate, “Differentially private
empirical risk minimization,” Journal of Machine Learning Research,
vol. 12, pp. 1069–1109, Mar. 2011.

[5] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends R© in Machine Learning, vol. 3,
no. 1, pp. 1–122, 2011.

[6] C. Dwork and A. Roth, “The algorithmic foundations of differential
privacy,” Foundations and Trends in Theoretical Computer Science,
vol. 9, no. 3–4, pp. 211–407, 2014.

[7] Ú. Erlingsson, V. Pihur, and A. Korolova, “Rappor: Randomized aggre-
gatable privacy-preserving ordinal response,” in Proceedings of the 2014
ACM SIGSAC conference on computer and communications security.
ACM, 2014, pp. 1054–1067.

[8] Apple’s differential privacy is about collecting your data - but
not your data. [Online]. Available: https://www.wired.com/2016/06/
apples-differential-privacy-collecting-data/

[9] V. Vapnik, The nature of statistical learning theory. Springer science
& business media, 2013.

[10] S. Suri and S. Vassilvitskii, “Counting triangles and the curse of the last
reducer,” in Proceedings of the 20th international conference on World
wide web. ACM, 2011, pp. 607–614.

[11] R. Zhang and J. Kwok, “Asynchronous distributed admm for consensus
optimization,” in ICML, 2014, pp. 1701–1709.

[12] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks
that exploit confidence information and basic countermeasures,” in
Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2015, pp. 1322–1333.

[13] A. Shamir, “How to share a secret,” Communications of the ACM, vol. 22,
no. 11, pp. 612–613, 1979.

[14] M. Lichman, “UCI machine learning repository,” 2013. [Online].
Available: http://archive.ics.uci.edu/ml

[15] H. Jin, L. Su, H. Xiao, and K. Nahrstedt, “Inception: incentivizing
privacy-preserving data aggregation for mobile crowd sensing systems.”
in MobiHoc, 2016, pp. 341–350.

[16] X. Jin and Y. Zhang, “Privacy-preserving crowdsourced spectrum sens-
ing,” in IEEE INFOCOM, 2016.

[17] E. Shi, H. Chan, E. Rieffel, R. Chow, and D. Song, “Privacy-preserving
aggregation of time-series data,” in NDSS. Internet Society, 2011.

[18] B. Liu, Y. Jiang, F. Sha, and R. Govindan, “Cloud-enabled privacy-
preserving collaborative learning for mobile sensing,” in SenSys. ACM,
2012, pp. 57–70.

[19] Y. Gong, Y. Fang, and Y. Guo, “Private data analytics on biomedical
sensing data via distributed computation,” IEEE/ACM Transactions on
Computational Biology and Bioinformatics, vol. 13, no. 3, pp. 431–444,
2016.

[20] J. Hamm, A. C. Champion, G. Chen, M. Belkin, and D. Xuan, “Crowd-
ml: A privacy-preserving learning framework for a crowd of smart
devices,” in ICDCS, 2015, pp. 11–20.

[21] J. F. Mota, J. M. Xavier, P. M. Aguiar, and M. Puschel, “D-admm:
A communication-efficient distributed algorithm for separable optimiza-
tion,” IEEE Transactions on Signal Processing, vol. 61, no. 10, pp. 2718–
2723, 2013.

[22] V. Nikolaenko, U. Weinsberg, S. Ioannidis, M. Joye, D. Boneh, and
N. Taft, “Privacy-preserving ridge regression on hundreds of millions
of records,” in IEEE Symposium on Security and Privacy, 2013, pp.
334–348.

[23] P. Mohassel and Y. Zhang, “Secureml: A system for scalable privacy-
preserving machine learning,” in IEEE Symposium on Security and
Privacy, 2017, pp. 19–38.

[24] K. Xu, H. Yue, L. Guo, Y. Guo, and Y. Fang, “Privacy-preserving ma-
chine learning algorithms for big data systems,” in Distributed Computing
Systems (ICDCS), 2015 IEEE 35th International Conference on. IEEE,
2015, pp. 318–327.

[25] K. Xu, Y. Guo, L. Guo, Y. Fang, and X. Li, “My privacy my decision:
Control of photo sharing on online social networks,” IEEE Transactions
on Dependable and Secure Computing, vol. 14, no. 2, pp. 199–210, 2017.

[26] R. Shokri and V. Shmatikov, “Privacy-preserving deep learning,” in CCS.
ACM, 2015, pp. 1310–1321.

[27] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar,
and L. Zhang, “Deep learning with differential privacy,” in CCS. ACM,
2016, pp. 308–318.

2018 IEEE Conference on Communications and Network Security (CNS)

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on June 28,2021 at 15:26:30 UTC from IEEE Xplore. Restrictions apply.

		2018-08-08T13:52:04-0400
	Certified PDF 2 Signature

