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Abstract—Federated learning (FL) involves a network of dis-
tributed agents that collaboratively learn a common model without
sharing their raw data. Privacy and communication are two
critical concerns of FL, but they are often treated separately
in the literature. While random noise can be added during
the FL process to defend against privacy inference attacks, its
magnitude is linearly proportional to the model size, which
can be very large for modern deep neural networks and lead
to severe degradation in model accuracy. On the other hand,
various compression techniques have been proposed to improve
the communication efficiency of federated learning, but their
interplay with privacy protection is largely ignored. Motivated
by the observation that privacy protection and communication
reduction are closely related in the context of FL, we propose
a new federated learning scheme called CMP-Fed that achieves
agent-level differential privacy with high model accuracy by
leveraging the communication compression techniques in FL with
large model sizes. The key component of CMP-Fed is compressed
model perturbation (CMP), which first compresses the shared
model updates before perturbing them with random noise at each
communication round of federated learning. Experimental results
based on Fashion-MNIST dataset show that CMP-Fed can largely
outperform the existing differentially private federated learning
schemes in terms of model accuracy under the same privacy
guarantee while still enjoying the communication benefit of model
compression.

Index Terms—federated learning, differential privacy, model
compression, low-rank approximation.

I. INTRODUCTION

Federated learning (FL) enables a network of distributed
agents to collaboratively learn a common machine learning
model under the orchestration of a central server. Compared
with the traditional, centralized learning, FL is capable of
reducing communication cost, improving latency, and enhanc-
ing data privacy while obtaining an accurate shared learning
model for on-device inference [1]. Therefore, FL has attracted
significant attention over the past few years and been applied
to a wide range of applications such as Google and Apple’s
smartphone apps, autonomous driving, financial risk prediction,
pharmaceuticals discovery, electronic health record mining, and
smart manufacturing [2].

Although promising, FL faces several challenges, among
which privacy is a major one. Although personal data are
kept on agents locally in FL, it can still be inferred from
local model updates communicated between agents and the
central server as demonstrated by recent attacks including

model inversion attack [3] and membership inference attack
[4]. As a cryptography-inspired rigorous definition of privacy,
differential privacy (DP) has become the de facto standard for
achieving data privacy and can defend against various privacy
inference attacks in FL [5]. The main challenge to achieve DP
in FL lies in the adverse impact of DP noise on model accuracy.
Although DP can be straightforwardly achieved using Gaussian
or Laplacian mechanism in FL, the required intensity of added
noise to achieve a desirable level of DP is high, particularly
for deep neural networks (DNNs) with large numbers of model
parameters.

Besides privacy, communication is another core challenge in
FL as local model updates of large size need to be exchanged
frequently, and the network bandwidth between the central
server and agents is often limited. In light of that, various
communication compression techniques [6]–[9] have been pro-
posed in literature to reduce the size of messages transmitted
at each communication round. However, the interplay between
communication compression and privacy protection is seldom
considered in the literature. Note that communication reduction
and privacy protection are actually closely related in the context
of FL, and they share a common goal to reduce, mask, or
transform information sent across the network in a way that
preserves the underlying learning task.

The joint consideration of communication efficiency and
privacy protection in FL faces the following major challenges.
First, both communication compression techniques (e.g., quan-
tization and sparsification) and DP techniques (e.g., Laplace
and Gaussian mechanisms) are known to affect the model
accuracy adversely. Combining those techniques in a straight-
forward manner could lead to severe degradation in model
accuracy, making the learned model useless. Second, secure
aggregation has become a common practice in FL as a key
privacy-enhancing technique and enables the server to obtain
the aggregated model update information without knowing
individual values from agents [10]–[12]. The existing com-
pression techniques such as stochastic quantization [8] and
random/top-k sparsification [13] are not directly compatible
with secure aggregation because the compressed updates shared
by the agents cannot be aggregated at the server without being
decompressed first.

Most of the works in FL literature treat communication
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efficiency and privacy separately. For a few studies that do
consider both, they either simply combine the techniques for
addressing each individual goal together without considering
their interplay [14], or view those two goals as conflicting and
aim to tackle the new challenges to privacy brought by the
communication-compression techniques [15], [16]. Therefore,
the resulting model accuracy is rather low for differentially
private and communication-efficient FL, particularly for DNNs
with large numbers of model parameters.

In this paper, we show that well-crafted communication
compression techniques can help with privacy in FL, and if
integrated with DP mechanisms, lead to privacy amplification
effects and improved model accuracy. In particular, we propose
a new DP technique called compressed model perturbation
(CMP) and use it to design CMP-Fed, a novel differentially
private FL scheme that can achieve agent-level DP guarantee
while maintaining high model accuracy. CMP is inspired by
the low-rankedness of gradients in DNNs as observed in [17],
[18] and works by first reducing the dimension of a model
update via low-rank approximation and then adding Gaussian
noise to the low-dimension counterparts. The proposed CMP
ensures the signal-to-noise ratio in the reconstructed noisy
model update is larger than that obtained by adding noise
directly to the original model update, and hence leads to a
higher model accuracy under the same DP guarantee. Moreover,
CMP is a linear operation and easy to be combined with secure
aggregation without losing the communication benefit of update
compression.

In summary, the main contributions of this paper are as
follows.

• We propose a novel FL scheme called CMP-Fed that
achieves agent-level DP with high model accuracy for FL
with large DNNs. CMP-Fed can obtain an estimator of
target private model update in each communication round
with much lower perturbation variance than traditional
model update perturbation under the same level of DP
guarantee, leading to higher model accuracy.

• We show that the designed compression method in CMP-
Fed is linear in the sense that the server can directly
aggregate the noisy compressed model updates without
the need to decompress individual updates. As a result,
it can be easily combined with secure aggregation, which
is a key privacy-enhancing technique to achieve agent-
level DP in FL, while preserving the benefit of reduced
communication.

• We provide a tight end-to-end privacy analysis of CMP-
Fed using Rényi differential privacy (RDP) and evaluate
the performance of the proposed CMP-Fed on Fashion-
MNIST dataset under both IID and non-IID data distribu-
tions. The empirical results demonstrate that our solution
can achieve much higher model accuracy than existing
methods.

The rest of the paper is organized as follows. Preliminaries on
DP and FL are described in Section II. Section III introduces
the threat model and presents the proposed CMP-Fed scheme.

The experimental evaluation is given in Section IV, Section V
reviews the related work, and Section VI concludes the paper.

II. PRELIMINARIES

A. FL Basics

A typical FL system consists of N agents and a central
server. Each agent has a local dataset, and all agents collab-
oratively train a global model x on the collection of their local
datasets under the orchestration of the central server. The agents
in FL aim to find the optimal global model x by solving the
following empirical risk minimization problem while keeping
their data locally:

min
x∈Rd

f(x) :=
1

N

N∑
i=1

fi(x), (1)

where fi(x) = Ez∈Di
[li(x; z)] represents the local loss func-

tion of i-th agent (possibly non-convex), Di is the local dataset
of i-th agent, and z represents a data point sampled from Di.
One of the key features in FL is that data distributions at
different agents may be non-IID.

Federated Averaging [1] (FedAvg) is the most widely-used
optimization algorithm to solve Problem (1) in the FL setting.
It is an iterative process that involves multiple communication
rounds. At each communication round,

1) the server randomly selects a subset of agents and dis-
tributes the current global model to them,

2) each selected agent runs multiple steps of stochastic
gradient descent (SGD) in parallel to update the received
global model and sends the model update to the server,

3) the server aggregates all the local model updates to update
the global model for the next round of training.

While data locality helps privacy protection, secure aggregation
is often stacked with FedAvg to further protect the privacy of
individual model updates [10]. Specifically, under the secure
aggregation protocol, the agent encrypts the local model update
before sending it out, and then the server decrypts the sum of
these encrypted messages and recovers the sum of local model
updates to update the global model.

B. Differential Privacy

DP has been proposed as a rigorous privacy notion for
measuring privacy risk. The classic notion of DP, (ϵ, δ)-DP,
is defined as follows [5]:

Definition 1 ((ϵ, δ)-DP). Given privacy parameters ϵ > 0 and
0 ≤ δ ≤ 1, a randomized mechanism M satisfies (ϵ, δ)-DP
if for any two neighboring datasets D,D′ and any subset of
outputs O ⊆ range(M),

Pr[M(D) ∈ O] ≤ eϵ Pr[M(D′) ∈ O] + δ. (2)

As a relaxed version of (ϵ, δ)-DP, RDP has been proposed
in [19] as follows:

Definition 2 ((α, ρ(α))-RDP [19]). Given a real number α > 1
and privacy parameter ρ ≥ 0, a randomized mechanism M
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satisfies (α, ρ)-RDP if for any two adjacent datasets D,D′,
the Rényi α-divergence between M(D) and M(D′) satisfies

Dα[M(D)∥M(D′)] :=
1

α− 1
logE

[(
M(D)

M(D′)

)α]
≤ ρ(α).

Compared to (ϵ, δ)-DP, RDP has a tighter composition bound
and thus is more suitable to analyze the end-to-end privacy loss
of iterative algorithms. One can convert RDP to (ϵ, δ)-DP for
any δ > 0 as follows:

Lemma 1 (From RDP to (ϵ, δ)-DP [20]). If the randomized
mechanism M satisfies (α, ρ(α))-RDP, then it also satisfies
(ρ(α) + log(1/δ)

α−1 , δ)-DP.

In the following, we provide some useful definitions and
conclusions about DP and RDP that will support our main
results in this paper.

Definition 3 (l2-sensitivity [5]). Let h : D → Rd be a query
function over a dataset. The l2-sensitivity of h is defined as
ψ(h) := supD,D′ ∥h(D) − h(D′)∥2 for any two neighboring
datasets D and D′.

Lemma 2 (Gaussian Mechanism [19]). The Gaussian mech-
anism M = h(D) + Z with Z ∼ N (0, σ2Id) satisfies
(α, αψ2(h)/2σ2)-RDP.

Lemma 3 (RDP for Subsampling Mechanism [20], [21]). For
a Gaussian mechanism M and any m-datapoints dataset D,
defineM◦SUBSAMPLE as 1) subsample without replacement
B datapoints from the dataset (denote q := B/m as the
sampling ratio); and 2) apply M on the subsampled dataset
as input. Then if M satisfies (α, ρ(α))-RDP with respect to
the subsampled dataset for all integers α ≥ 2, then the new
randomized mechanism M◦ SUBSAMPLE satisfies (α, ρ′(α))-
RDP with respect to D, where

ρ′(α) ≤ 1

α− 1
log

(
1 + q2

(
α

2

)
min{4(eρ(2) − 1), 2eρ(2)}

+

α∑
j=3

qj
(
α

j

)
2e(j−1)ρ(j)

)
.

If σ′2 := σ2/ψ2(h) ≥ 0.7 and α ≤ (2/3)σ2 log(1/qα(1 +
σ′2)) + 1, M ◦ SUBSAMPLE satisfies (α, 3.5q2ψ2(h)α/σ2)-
RDP.

Lemma 4 (RDP Composition [19]). For randomized mech-
anisms M1 and M2 applied on dataset D, if M1 satisfies
(α, ρ1)-RDP and M2 satisfies (α, ρ2)-RDP, then their compo-
sition M1 ◦M2 satisfies (α, ρ1 + ρ2)-RDP.

C. Agent-Level DP in FL

In FL, the model updates of each participating agent are
transmitted separately and thus need to be protected from the
untrusted cloud server. Due to the distributed nature of FL,
we consider the notion of agent-level DP in this work and
define the neighboring datasets as follows: two datasets D
and D′ are neighboring datasets if D ∪ {Dc} or D \ {Dc}

is identical to D′ for an agent c, where Dc denotes all the data
points associated with agent c. Therefore, the privacy guarantee
holds w.r.t. all data points belonging to that agent. This is
stronger than the commonly-used notion of record-level DP
where only the addition or removal of one data point of an
agent is protected, and considered to be more suitable for FL
settings with large numbers of agents [22].

As a privacy-enhancing technique, secure aggregation is a
common practice in the literature to enable agent-level DP in
FL. Secure aggregation is a lightweight instance of crypto-
graphic secure multi-party computation that prevents the server
from inspecting individual model updates of agents in FL [10],
[11]. It allows the server to learn just an aggregate function
of the agents’ local model updates, typically the sum, and
nothing else, and hence improves privacy. In the typical setting
of FL with a single server, secure aggregation is achieved
by adding random mask vectors sampled over a finite group
on local model updates before sending them out. Specifically,
agents generate randomly sampled zero-sum mask vectors
locally by working in the space of integers modulo m and
sampling the elements of the mask uniformly from Zm. Secure
aggregation in FL ensures that the masked local model update
is indistinguishable from random values, revealing no further
information to potential adversaries. However, when the server
computes the modular sum of all the masked updates, the masks
cancel out and the server obtains the exact sum of local model
updates. As with the existing works in FL [12], [23]–[25], we
ignore the finite precision and modular summation arithmetic
associated with secure aggregation in this paper, noting that
one can follow the strategy in [26] to transform the real-valued
vectors into integers for minimizing the approximation error of
recovering the sum.

III. CMP-FED: DIFFERENTIALLY PRIVATE FL WITH
COMPRESSED MODEL PERTURBATION

In this section, we present CMP-Fed with the goal of
preserving high model accuracy under agent-level DP guarantee
in FL. We first describe the threat model considered in this
work, and then we propose our CMP method against this threat
and analyze the privacy guarantee of CMP-Fed.

A. Threat Model

The adversary considered here can be the “honest-but-
curious” server or agents in the system. The adversary will
honestly follow the designed training protocol but is curious
about a target agent’s private data and wants to infer it from
the shared messages. Furthermore, some agents can collude
with the server or each other to infer private information about
a specific victim agent. Besides, the adversary could also be
the passive outside attacker. These attackers can eavesdrop the
shared messages in the execution of the training protocol but
will not actively inject false messages into or interrupt message
transmissions.
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Algorithm 1 CMP-Fed: Federated Learning with Compressed Model Perturbation

Require: number of selected agents per round S, agent-side
and server-side learning rates η and γ, number of com-
munication rounds T , local iteration period K, clipping
thresholds C1 and C2, noise magnitudes σ1, σ2, and low-
rank approximation coefficient r.

Server executes:
1: Initialize x0 ∈ Rm×n,V0 ∈ Rn×r

2: for each round t = 0 to T − 1 do
3: St ← set of S agents sampled uniformly at random

without replacement
4: Broadcast xt to all agents in St
5: for each agent i ∈ St in parallel do
6: U i

t+1 ← SubspaceIterate(i,xt,Vt)
7: end for
8: Decrypt

∑
i∈St
U i
t+1 to obtain

∑
i∈St

Ũ i
t+1

9: Ut+1 ← 1
S

∑
i∈St

Ũ i
t+1

10: Ût+1 ← Orthogonalize(Ut+1)
11: for each agent i ∈ St in parallel do
12: Vi

t+1 ← AgentUpdate(i, Ût+1)
13: end for
14: Decrypt

∑
i∈St
Vi
t+1 to obtain

∑
i∈St

Ṽ i
t+1

15: Vt+1 ← 1
S

∑
i∈St

Ṽ i
t+1

16: ∆t ← Ût+1V
⊺
t+1

17: xt+1 ← xt + γ∆t

18: end for
19: return xT

SubspaceIterate(i,xt,Vt):
20: xi

t,0 ← xt

21: for k = 0, . . . ,K − 1 do
22: Compute an unbiased estimate gi

t,k of ∇fi(xi
t,k) using

local dataset Di

23: xi
t,k+1 ← xi

t,k − ηgi
t,k

24: end for
25: ∆i

t ← xi
t,K − xt

26: U i
t+1 ←∆i

tVt

27: Ū i
t+1 ← U i

t+1 ×min
{
1, C1

∥Ui
t+1∥2

}
28: Ũ i

t+1 ← Ū i
t+1 +MNm×r(0, I, σ2

1I)
29: Encrypt Ũ i

t+1 and send it to server via secure aggregation

AgentUpdate(i, Ût+1):
30: V i

t+1 ← (∆i
t)

⊺Ût+1

31: V̄ i
t+1 ← V i

t+1 ×min
{
1, C2

∥V i
t+1∥2

}
32: Ṽ i

t+1 ← V̄ i
t+1 +MNn×r(0, I, σ2

2I)
33: Encrypt Ṽ i

t+1 and send it to the server via secure aggrega-
tion

B. CMP: Compressed Model Perturbation

The basic learning process of our proposed CMP-Fed scheme
follows the overall procedures of FedAvg with several key
modifications for privacy protection. Specifically, at each com-
munication round of FL, after computing the local update, each
agent uses CMP to first reduce the dimension of its model
update via low-rank approximation and then add Gaussian noise
to the low-dimensional counterparts of model update before
sending them to the server via a secure aggregation protocol
(refer to [10], [11]). Next, the server reconstructs the noisy
aggregated model update from all participating agents without
knowing their individual values and updates the global model
for the next round. Note that the use of secure aggregation is a
common practice in literature to achieve client-level DP in FL
[10], [27], and the design of a new secure aggregation protocol
is out the scope of this paper. The entire process of CMP-Fed
is summarized in Algorithm 1 and described in detail below.

At the t-th communication round, the server samples a set of
S agents (denoted by St) uniformly at random without replace-
ment to participate in the training. Agents selected at current
round perform two procedures–SubspaceIterate (line 6) and
AgentUpdate (line 12)–to provide their model updates with
DP guarantee. Information shared by agents would go through
a secure aggregation protocol, where each agent performs an
encryption step (line 29 and line 33), and the server performs
aggregation and decryption (line 8 and line 14). The server

then reconstructs the model update ∆t (line 16) and updates
the global model xt (line 17).

In the SubspaceIterate procedure, each agent i ∈ St receives
the global model xt from the server and performs K iterations
of SGD (lines 21-24) to obtain a local model update ∆i

t

(line 25). This model update needs to be perturbed before
sharing with the server. As explained before, the intensity
of the injected Gaussian noises is linearly proportional to
the dimension of the shared model update. To reduce the
noise intensity, we use the low-rank approximation to preserve
the most important information in the model update while
aggressively reducing its size before perturbation.

As with existing work on communication-efficient distributed
learning with low-rank approximation [6], [9], we represent
the local model update ∆i

t as a set of weight matrices, each
corresponding to a layer. Note that the parameters of fully-
connected layers and their gradients have an inherent matrix
structure, and the parameters of convolutional layers can also
be interpreted as fully-connected layers applied repeatedly
over a 2-dimensional grid of inputs. In the experiments, we
approximate each layer independently for better computation
efficiency.

For presentation simplicity, we use Mm×n to denote the
model update matrix of a single layer that we want to approx-
imate for an agent. The goal of the low-rank approximation is
to find two matrices Um×r and Vn×r such that ||M−UV T ||2
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is small. Here M is an m by n matrix, subspace U is an m
by r matrix, model embedding V is an n by r matrix, and
r ≪ min(m,n). The factorization of M can be done via a full
singular value decomposition (SVD) at every communication
round. After the agent obtains U and V for its model update,
it can use U and V as the shared parameters, whose dimension
sizes are much smaller than that of the original update matrix
M . Since the most important information needed for model
updating is carried by the top r ranks, the compression will
have a marginal impact on the intensity of the useful signal.

However, decomposition of the model updates independently
via full SVD is computation-intensive and not practical for
resource-limited agents such as mobile devices. In addition,
when agents calculate their own low-rank approximation, the
server needs to obtain the values of individual U and V
to reconstruct the approximate value of M , which is not
compatible with existing secure aggregation method in FL that
only reveals the sum [10].

Based on the observation that only the average of the model
updates needs to be obtained at the server, we propose to fac-
torize the aggregated model updates instead of each individual
model update via power iteration. Specifically, we only use
one step of power iteration, i.e., the agent only performs a
single step of subspace iteration to compute an approximation
of the aggregated model update. Each step of subspace iteration
involves two matrix multiplications and one orthogonalization.
Since we divide the model updates into layers and factorize
each layer independently, the matrix multiplication does not
involve large matrices and can be computed efficiently. In the
experiments, we use Gram-Schmidt procedure for the orthogo-
nalization [9]. To improve the efficiency of power iteration, we
use the approximation from the previous round as the starting
point of the current round. Note that although agent sampling in
FL appears to prevent the use of warm start due to the changing
set of agents, it is feasible as the server already keeps a copy
of the aggregated U and V .

In the SubspaceIterate procedure, after obtaining the local
model update ∆i

t, the agent performs one-step subspace itera-
tion with a right multiplication (line 26), bounds the norm of
the result via clipping (line 27), and then perturbs the resulting
subspace Ū i

t+1 with Gaussian noise b1 ∼ MNm×r(0, I, σ2
1I)

(line 28). The perturbed results would be aggregated by the
server and shared with agents to execute the AgentUpdate pro-
cedure (lines 8-13). In the AgentUpdate procedure, the agent
performs one-step subspace iteration with a left multiplication
(line 30), clips the result (line 31), and then perturbs the result-
ing matrice V̄ i

t+1 with Gaussian noise b2 ∼MNn×r(0, I, σ2
2I)

(line 32). Next, all the perturbed matrices {Ṽ i
t+1, i ∈ St} will

be aggregated by the server and used to reconstruct the model
update ∆t for global model update (lines 14-17).

Note that power iteration does not change the sensitivities of
U and V as they are determined by the corresponding clipping
thresholds, which are fixed beforehand. Moreover, with the use
of power iteration, the calculation of the aggregated U and V
is linear, and secure aggregation can now be easily stacked

with our approach. Secure aggregation hides the individual
parameters and only reveals the aggregated U and V , which
enables us to reduce the magnitude of added Gaussian noise at
each agent by a ratio of

√
S, where S = |St| is the number of

selected agents at round t (see the proof of Theorem 1). In our
algorithm, each agent encrypts its local U or V before sending
it out, then the server sums the encrypted local subspaces (i.e.,∑

i∈St
U i
t+1) or embeddings (i.e.,

∑
i∈St
Vi
t+1 ) and decrypts

it to obtain the sum of local subspaces (i.e.,
∑

i∈St
Ũ i

t+1)
or embeddings (i.e.,

∑
i∈St

Ṽ i
t+1). Note that the decryption

happens after the ciphertexts of all agents at the current round
have been aggregated, and thus individual plaintext is unknown
to the server. We refer the readers to [10], [11] for the detailed
encryption and decryption process of secure aggregation.

C. Privacy Analysis

The level of DP guarantee of the resulting learning algorithm
depends on the values of noise magnitudes σ1 and σ2, as well as
the sensitivities of perturbed matrices. To control the sensitivity,
we follow the common practice to clip them with pre-defined
thresholds C1 and C2. We can then use RDP to account the total
privacy loss across T rounds. The final DP guarantee can be
obtained by converting RDP back to DP, as given in Theorem 1.

Theorem 1 (Privacy Guarantee of CMP-Fed). Assume the noise
magnitudes σ1 = C1σ/

√
S and σ2 = C2σ/

√
S where σ > 0

represents the noise multiplier, and the agent is sampled without
replacement with probability q := S/N at each round. After T
rounds of training, CMP-Fed satisfies (ϵ, δ)-DP for any δ ∈
(0, 1), where

σ2 ≥ 14q2T (ϵ+ 2 log(1/δ))

ϵ2
,

if α ≤ (2/3)min{C2
1 , C

2
2}σ2 log(1/qα(1+σ2))+ 1 and σ2 ≥

0.7.

Proof: Since the server only knows the sum of local sub-
spaces/embeddings, i.e.,

∑
i∈St

Ū i
t+1 and

∑
i∈St

V̄ i
t+1, due to

the use of secure aggregation, we need to compute the privacy
loss incurred from releasing the above aggregated matrices at
each round. Assume the agent sets St and S ′t differ in one agent
index c such that S ′t := St

⋃
{c}. For any two adjacent datasets

D := {Di}i∈St
and D′ := {Dj}j∈S′

t
= {Di}i∈St

⋃
Dc,

according to Definition 3, the ℓ2-sensitivities of the sum of
local matrices are

ψU := sup
D,D′

∥∥∥∥∥ ∑
i∈St

Ū i
t+1(Di)−

∑
j∈S′

t

Ū j
t+1(Dj)

∥∥∥∥∥
2

,

ψV := sup
D,D′

∥∥∥∥∥ ∑
i∈St

V̄ i
t+1(Di)−

∑
j∈S′

t

V̄ j
t+1(Dj)

∥∥∥∥∥
2

.

Due to the clipping, we have ∥Ū i
t+1(Di)∥2 ≤ C1,∀i ∈

[N ] and ∥V̄ i
t+1(Di)∥2 ≤ C2,∀i ∈ [N ], and there-

fore ψU = supD,D′

∥∥Ū c
t+1(Dc)

∥∥
2
≤ C1 and ψV =

supD,D′

∥∥V̄ c
t+1(Dc)

∥∥
2
≤ C2. As the sum of Gaussian random

variables is still a Gaussian random variable, the variance of
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the Gaussian noise added to each selected coordinate of the
sum of local matrices are Sσ2

1 and Sσ2
2 , respectively.

Let σ represent the noise multiplier, and assume that σ1 =
C1σ/

√
S and σ2 = C2σ/

√
S, then the aggregated matrices

Ut+1 and Vt+1 at t-th round satisfy (α, α/2σ2)-RDP and
(α, α/2σ2)-RDP, respectively (by Lemma 2). Then, the t-th
round of Algorithm 1 satisfies (α, α/σ2)-RDP according to
Lemma 4. Suppose the agent is sampled without replacement
with probability q := S/N at each round. By Lemma 3, the t-
th round of Fed-SMP satisfies (α, 7q2α/σ2)-RDP, if σ2 ≥ 0.7
and α ≤ 1 + (2/3)min{C2

1 , C
2
2}σ2 log(1/qα(1 + σ2)). Next,

by Lemma 4, Fed-SMP satisfies (α, 7q2Tα/σ2)-RDP after T
rounds of training. Finally, in order to guarantee (ϵ, δ)-DP
according to Lemma 1, we need

7q2Tα

σ2
+

log(1/δ)

α− 1
≤ ϵ.

Choose α = 1 + 2 log(1/δ)/ϵ and rearrange the inequality in
(III-C), we need

σ2 ≥ 14q2T (ϵ+ 2 log(1/δ))

ϵ2
.

Note that the calculation of privacy loss depends on the
choice of the hyperparameter α, and in the experiments, we
numerically compute the total privacy loss using the Opacus
package in python [28].

IV. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of CMP-Fed
under different levels of compression, and compare it with the
following baselines:

• FedAvg: the classic non-private federated learning algo-
rithm;

• DP-FedAvg [22]: a classic differentially-private variant of
FedAvg, where the local model update is first perturbed
directly by adding Gaussian noise drawn from the distri-
bution N (0, σ2Id) (here d denotes the dimension of the
original model update);

• DP-RandAgg: a communication efficient variant of DP-
FedAvg, where the local model update is perturbed
by adding Gaussian noise drawn from the distribution
N (0, σ2Id) and then sparsified using the random-k sparsi-
fication [29]. Note that for fair comparison, we adapt the
proposed algorithm in [29] to be compatible with secure
aggregation, where a common subset of coordinates is
sampled at the beginning of each round and used by all
selected agents in that round;

• UV-Fed: the non-private counterpart of CMP-Fed where
the model updates are compressed via low-rank approxi-
mation without adding any DP noise.

All the algorithms are implemented in PyTorch, and all the
experiments are executed on a workstation of 4 Nvidia Quadro
RTX 8000 GPUs. When using one GPU, each experiment takes
around 20 minutes.

A. Experimental Settings

1) Datasets and Models: We conduct experiments on
Fashion-MNIST [30], a common benchmark for differentially
private machine learning. While the Fashion-MNIST is consid-
ered as “solved” in the computer vision community, achieving
high utility with strong privacy guarantee remains difficult on
this dataset [31]–[33]. The Fashion-MNIST dataset consists of
60,000 28 × 28 grayscale images of 10 fashion categories,
along with a set of 10,000 test samples. To simulate the IID
data distribution, we randomly split the training data among
6,000 agents. To simulate the non-IID data distribution, we
split the training data among 6,000 agents such that images
at each agent only cover 5 labels. We use the CNN model in
[1], which consists of two 5 × 5 convolution layers (the first
with 32 filters, the second with 64 filters, each followed with
2×2 max pooling), a fully connnected layer with 512 units and
ReLu activation, and a final softmax output layer (1.6 million
parameters in total).

2) Hyperparameters: For all experiments, we set the number
of selected agents per round S = 100, number of communica-
tion rounds T = 180, local iteration period K = 10, and global
learning rate γ = 1.0 by default. We use momentum SGD as
the local optimizer of agents with a momentum coefficient of
0.5 and batch size of 10. The local learning rate is tuned over
the grid η = {0.001, 0.01, 0.05, 0.125} and decays at a rate of
0.99 at each round. It is worth mentioning that the momentum
at each agent is initialized at every communication round since
local momentum will be stale due to the partial participation
of agents. For all privacy-preserving experiments, we set the
privacy failure probability δ = 10−4 so that δ < 1/N , and
the noise magnitude σ for each private scheme is computed
beforehand given the privacy budget ϵ. The clipping parameter
is selected according to the median of the l2-norm of the
subspace/embedding/model to be clipped. Specifically, we have
C1 = 0.01, C2 = 1.0 for CMP-Fed and C = 1.0 for DP-
FedAvg and DP-RandAgg.

B. Experimental Results

1) Impact of compression level in CMP-Fed: In Fig. 1,
we show the privacy-accuracy trade-off of CMP-Fed when
using different coefficients r in the low-rank approximation
corresponding to different levels of compression. It is easy to
observe that as the privacy budget ϵ increases, more commu-
nication rounds are allowed and the testing accuracy improves
accordingly. Besides, a small compression level results in less
amount of added Gaussian noise and smaller privacy error, but
larger compression error. From the figure, we can also observe
that as the rank goes down, the compression error starts to
dominate and affects the testing accuracy more than the privacy
error brought by the DP noise. Thus the accuracy was reduced
as the rank reduces from 16 to 1. This has been observed under
both IID and non-IID settings.

2) Testing accuracy comparison: We compare the testing
accuracy of CMP-Fed with non-private baselines FedAvg [1],
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(b) Non-IID setting.

Fig. 1: Privacy-accuracy trade-off of CMP-Fed under different compression levels

Algorithm
Testing accuracy (%)

rank = 1 rank = 2 rank = 4 rank = 8 rank = 16 no compression
CMP-Fed 68.54± 2.41 71.00± 1.09 73.64± 0.29 76.20± 0.90 78.87± 0.05 -

DP-RandAgg 52.42± 2.76 59.05± 3.91 66.82± 2.39 70.93± 0.89 74.84± 0.81 -
UV-Fed 77.44± 0.67 79.71± 0.64 83.10± 0.23 84.76± 0.18 86.15± 0.26 -

DP-FedAvg - - - - - 77.65± 0.46

FedAvg - - - - - 86.61± 0.40

TABLE I: Summary of results on Fashion-MNIST dataset (IID). CMP-Fed, DP-RandAgg, and DP-FedAvg achieve (1, 10−4)-DP,
and UV-Fed and FedAvg are non-private baselines.

Algorithm
Testing accuracy (%)

rank = 1 rank = 2 rank = 4 rank = 8 rank = 16 no compression
CMP-Fed 67.25± 2.93 70.72± 1.87 73.92± 1.03 76.24± 0.74 77.93± 0.62 -

DP-RandAgg 49.67± 4.76 56.56± 2.98 65.54± 2.01 69.89± 1.67 74.12± 0.64 -
UV-Fed 77.15± 0.31 80.24± 0.71 82.87± 0.41 84.68± 0.19 85.82± 0.26 -

DP-FedAvg - - - - - 75.75± 0.86

FedAvg - - - - - 86.49± 0.44

TABLE II: Summary of results on Fashion-MNIST dataset (non-IID). CMP-Fed, DP-RandAgg, and DP-FedAvg achieves
(1, 10−4)-DP, and UV-Fed and FedAvg are non-private baselines.

DP-FedAvg [22], and a modified version of prior work, DP-
RandAgg [29]. The results are summarized in Table I (IID
setting) and Table II (non-IID setting). Note that we always let
DP-RandAgg achieve the same compression ratio of CMP-Fed
which is r(m + n)/mn. We also add the low-rank approxi-
mation algorithm UV-Fed for illustrative purpose, which is a
non-private version of CMP-Fed. We run each experiment with
5 random seeds and report the average and standard deviation.
We can observe that in both IID and non-IID settings, the non-
private baseline FedAvg has a testing accuracy of 86% after 180
rounds. For algorithms with agent-level DP, Gaussian noises are
added in the training process, which inevitably degrades the
accuracy. Specifically, the accuracy of DP-FedAvg decreases
to 78% under IID setting and 76% under non-IID setting with
(1.0, 10−4)-DP.

Our basic intuition that CMP can improve privacy-accuracy

tradeoffs has been verified in the table as well. Specifically,
CMP-Fed can reach higher accuracy than DP-FedAvg while
achieving the same privacy guarantee, e.g., when r = 16, CMP-
Fed improves the accuracy by 1.6% in IID setting and 2.9% in
non-IID setting respectively, compared with DP-FedAvg. This
is due to the fact that compression reduces the noise magnitude
introduced by DP and boosts the signal-to-noise ratio in the
noisy model update. However, as r decreases, the compression
error starts to dominate and offset the privacy amplification
effect, which decreases the testing accuracy of CMP-Fed. This
can be inferred from the comparison between UV-Fed and
CMP-Fed when r = 1: CMP-Fed drops by 12% in accuracy
from DP-FedAvg in IID setting, and the testing accuracy of UV-
Fed also drops by 11% from FedAvg; and in non-IID setting,
CMP-Fed drops by 11% in accuracy from DP-FedAvg and UV-
Fed drops by 11% in accuracy from FedAvg.
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Fig. 2: Accuracy v.s. communication cost comparison for CMP-Fed and baselines.

3) Communication efficiency comparison: We also compare
CMP-Fed with other baselines in terms of communication
efficiency. Considering that uplink traffic is typically much
more expensive than downlink traffic [1], we estimate the
communication cost for the involved algorithms by counting
the size of the data sent from a agent to the server as the input
into the secure aggregation protocol. For CMP-Fed and UV-
Fed, the uplink data size equals to 32r(m + n) × T × (S/N)
bits; the uplink data size for DP-RandAgg is also 32r(m +
n)× T × (S/N) bits; and the uplink cost for DP-FedAvg and
FedAvg is 32mn × T × (S/N) bits. From this comparison,
it is easy to see that CMP-Fed and DP-RandAgg have lower
uplink communication cost compared to DP-FedAvg with the
same communication rounds. Note that with secure aggregation
protocols [10], [11], the actual traffic would be larger. However,
this is not the focus of this paper and does not impact the
conclusions we draw here.

We plot the testing accuracy of FedAvg, DP-FedAvg, CMP-
Fed with r = 16, and DP-RandAgg with the same compression
level as CMP-Fed, with respect to the uplink communication
cost in Fig. 2. We can observe that under IID setting, to
achieve a target accuracy 74%, CMP-Fed saves 69%, 90% and
89% uplink communication cost compared with DP-RandAgg,
DP-FedAvg and FedAvg, respectively; under non-IID setting,
CMP-Fed saves 73%, 93% and 89% uplink communication
cost compared with DP-RandAgg, DP-FedAvg and FedAvg,
respectively.

V. RELATED WORKS

DP has been widely used for providing rigorous privacy
guarantee in machine learning [12], [34]–[39]. General DP
mechanisms, such as Gaussian or Laplacian mechanism, rely
on the addition of carefully calibrated noise to the output of
an algorithm directly. The additive noise is proportional to the
model size, which would be prohibitively large (e.g., millions
of model parameter) for DNNs commonly used in FL. To boost
the utility-privacy trade-off, two prior work have proposed to
use gradient compression for improving privacy-utility trade-off
in centralized learning setting [40], [41]. However, both work
require a non-private public dataset to identify the subspace

for gradient compression [40], [41], which is difficult to obtain
for FL settings with non-IID data distribution. In addition, [40]
requires the transmission of full-dimension residue, which is
not communication-efficient. The work closest to ours is [29],
which uses random sparsification for privacy amplification in
the FL setting. However, it only considers record-level DP,
and the proposed scheme will lose the communication benefit
of sparsification if directly combined with secure aggregation
for agent-level DP. We have compared our approach with
a modified version of [29] that is compatible with secure
aggregation, and shown that our approach can achieve a better
privacy-accuracy trade-off.

It is worth noting that besides improving utility-privacy
trade-offs, our scheme is also communication-efficient by com-
pressing the shared model updates in FL. While there have
been a line of work on improving communication efficiency
in distributed learning [6]–[9], [42], none of them jointly
consider privacy and communication efficiency. The closest
paper to ours is cpSGD [15], which is a modified distributed
SGD scheme that provides agent-level DP and communication
efficiency simultaneously via combining gradient quantization
and Binomial mechanism. However, their model accuracy has
been reported to be much worse than other baselines such as
DP-RandAgg in [29] because quantization may increase rather
than decrease the intensity of additive DP noise, and therefore
we do not include their results in this paper.

VI. CONCLUSION

In this paper, we have proposed CMP-Fed, a novel differ-
entially private FL scheme via compressed model perturbation
to achieve agent-level DP with high model accuracy in FL.
Our choices of linear compressor, speed-up choice, as well as
other key designs enable us to greatly improve the accuracy and
applicability of CMP-Fed. Experimental results have demon-
strated the superior performance of our approach compared
with prior approaches.
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