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ABSTRACT
Although data centers are recognized as promising resources
for demand response (DR), it is not easy for them to partici-
pate into DR programs due to their unreliable DR capacities.
The unreliability mainly comes from their random workload
arrivals. In this paper, we study how to enable reliable data
center DR. We focus on the scenario that independent data
centers participate into capacity bidding program (CBP) in
which they need to sign forward contracts to commit the
amount of power reduction during the DR event. We show
that due to the uncertainty of DR capacity in real time, it
is risky for the data centers to sign contracts in advance.
Such risky behaviors are adverse to the profitability of data
centers when providing DR resources. Inspired by the in-
tuition that aggregation can reduce uncertainty, we propose
that data centers cooperate with others and sign the forward
contract collectively based on their aggregated DR capacity
to mitigate the uncertainty of DR capacity. A coalitional
game is used to model the cooperation among the data cen-
ters. We further design a payoff allocation to split the profit
generated via cooperation fairly, guaranteeing that no coali-
tion has the incentive to deviate. In addition, we show that
the proposed payoff allocation captures the marginal con-
tribution of each data center and is efficient. Finally, trace
driven simulation results are presented to demonstrate the
effectiveness of the proposed approach. The results show
that participating into CBP collaboratively leads to a win-
win situation where the data centers obtain higher profits
and the utility company gets more reliable DR resources
from data centers.

CCS Concepts
•Hardware→Enterprise level and data centers power
issues; •Theory of computation→ Solution concepts
in game theory;
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1. INTRODUCTION
Our power grid nowadays is experiencing higher penetra-

tion of renewable energy. The intermittent and fluctuating
renewables introduce a crucial challenge to the balance be-
tween supply and demand of the power system. Demand re-
sponse (DR), which is an important component of the future
smart grid [1, 3, 6], is an elegant and economic feasible solu-
tion to address the challenge by controlling the demand side
to maintain the power balance. Additionally, several bene-
fits can be achieved by DR. First, the consumers can receive
incentive payments or reduce electricity bills if they respond
to the programs. Second, the reliability of the power sys-
tem can be improved, which reduces the risk of outages [7].
Furthermore, the benefit is also market-wide. The system
capacity is improved, and the electricity price is expected
to decrease through DR. Finally, DR is also beneficial to
the electricity market by improving the market performance
and reducing the volatility of electricity price. Considering
all these attractive and important features, more and more
attentions are paid to DR. According to the report from
ISO-NE [2], the growth of DR resources in New England
from 2003 to 2010 is more than 2000 MW.

Data centers, which serve as the backbone of the modern
economy, are valuable and promising DR resources [8, 13,
40]. First and foremost, the flexibility of data centers, which
has been explored by previous works [18, 19, 38, 42], pro-
vides the potential to participate into DR programs. The
flexibility can be obtained using either workload manage-
ment techniques, or on-site generation and energy storage.
Second, data centers are usually large loads in the power
grid, and their energy consumption is growing fast [23, 27].
For instance, the electricity consumption of data centers in
US was about 91 billion kilowatt-hour in 2013, leading to an
estimated $9 billion electricity bill, and the annual growth
rate of the electricity consumption of data centers is ex-
pected to be more than 10% [27]. In a word, data centers
are large, yet flexible loads in the power system. With their
participation in the DR programs, in the ideal case, we can
reach a desirable win-win situation where the data centers
can obtain more financial benefits and the sustainability of
the power system can be improved.

Even though data centers are promising DR resources, it
is far from easy for them to participate into the existing
DR programs. One important reason is that the DR capac-
ity of a data center highly depends on its workload arrival,
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which is uncertain. In some DR programs, the amount of
DR capacity needs to be committed in advance. To partic-
ipate into such DR programs, data centers as DR resources
are required to either bid into a forward market or sign a
forward contract [4, 5]. The purpose is for ease of making de-
cisions on unit commitment or generation reserve for utility
companies [33], and reducing the potential risks effectively
[11, 35]. However, these actions in advance are potentially
risky to the data centers. From the perspective of data cen-
ters, they may incur heavy penalties if they fail to deliver
the committed amount of DR due to the unexpected rise
of their workload arrivals. Such uncertain responses in real
time will potentially drive data centers away from the DR
programs because data centers care more about the DR pro-
grams or events in which they can achieve benefits [6]. From
the perspective of the system operator, the unreliability of
data center DR capacities can make the unit commitment or
generation reserve decisions inefficient since the actual load
reduction depends on the realized DR capability [6]. There-
fore, we are faced a challenge of how to make data centers
reliable DR resources, especially when they participate into
the DR programs which require planning in advance. If this
challenge cannot be addressed properly, the desired win-win
situation mentioned above will unfortunately degrade to a
fail-fail situation.

Considering the potential of data centers to provide DR
resources, several priori works have been done. They could
be roughly divided into two categories. The first category
focuses on how to extract the flexibilities of data centers,
while the second category studies DR market or mechanism
design for data centers. Both of them are important to the
development of data center DR. Typical works in the first
category include workload shifting, geographical workload
balancing and so on [19, 20]. The works in the second cat-
egory can be further divided into two streams. The first
stream studies pricing based mechanisms such as coincident
peak pricing [21, 22], while the second stream mainly con-
siders incentive based DR mechanisms such as auction or
supply function bidding based mechanism design [9, 17, 46].
However, most of these works do not consider the uncertain-
ties of data center DR capacities when participating into a
DR program that needs committed DR capacity in advance.
Therefore, the reliability of the data center DR when par-
ticipating into such DR programs has not been addressed in
the existing literature.

In this paper, we focus on enabling reliable data center
DR by mitigating the uncertainty of data center DR capac-
ity when participating into the capacity bidding program
(CBP), which is a typical example that requires planning in
advance [4, 5]. To participate into the CBP, a data center,
whose objective is to maximize its profit, needs to sign a for-
ward contract which defines the committed amount of DR.
Due to the uncertain response in real time caused by the
random workload arrival, the data center might be penal-
ized when it fails to deliver the committed amount of DR.
An intuition to reduce the uncertainty is that multiple in-
dependent data centers can cooperate with others to exploit
the statistical diversities of their workload arrivals and sign
the forward contract collectively based on their aggregated
DR capacity. To study the cooperation process, we use the
coalitional game theory to model the cooperation among
data centers. We show that cooperation can increase the to-
tal profit obtained through participating into the CBP, and

the data centers will form into the grand coalition to max-
imize the total expected profit. Furthermore, we design a
payoff allocation to divide the profit generated by coopera-
tion such that it stabilizes the game, satisfies fairness and is
computationally efficient.

To summarize, our contributions are as follows:

• We focus on how to enable reliable data center DR
and manage their participation into the CBP. To the
best of our knowledge, this is the first work on the
management of data centers in CBP when considering
the uncertainty of data center DR capacity.

• To mitigate the unfavorable uncertainty of data cen-
ter DR capacity, we propose that multiple independent
data centers participate into the CBP collaboratively
and sign the forward contract collectively based on the
aggregated DR capacity. A coalitional game based ap-
proach is proposed to analyze the cooperation process
among data centers.

• The benefits obtained through collaboration are ana-
lyzed and quantified. We further design a payoff allo-
cation to distribute the total profit generated through
collaboration so that the game is stabilized. Addition-
ally, we show the proposed payoff allocation captures
the marginal contribution of each data center, satisfies
efficiency and has low computation complexity.

• We have conducted simulations using the real world
trace data to show the effectiveness of the proposed
approach.

2. RELATED WORK
As we have mentioned before, the works focusing on data

center DR can be roughly divided into two streams. The
first stream studies how to extract the flexibilities of data
centers, while the second stream focuses on DR market or
mechanism design.

Workload management approaches are widely studied to
extract the flexibilities of data centers. There are many
works focus on power proportional system design [18, 39].
Workload scheduling, which exploits the temporal diversity
in renewable energy and workload intensity, is another tech-
nique to extract data center flexibilities [19, 43]. In addition,
energy storage is also used to extract data center flexibili-
ties [14, 15, 37]. Furthermore, geographical load balancing is
investigated to exploit the spatial diversity among multiple
geographically distributed data centers [20, 30, 36]. Geo-
graphical load balancing can not only be used to extract the
flexibilities of each data center [20, 30, 36], but also be help-
ful to maintain the reliability of the power system such as
preventing overflow on the transmission lines [12, 24, 25].

Another stream of works focuses on DR market or mech-
anism design. On one hand, some works propose to use
pricing based mechanisms, i.e., data centers are exposed to
price signals issued by the system operator and will respond
to them [17, 21, 22, 36]. On the other hand, some efforts
are devoted to incentive based mechanisms, i.e., data centers
bid their marginal costs or DR capabilities to the system op-
erator [9, 45, 46]. Emergency DR (EDR) programs, which
mainly target at load reduction under emergent scenarios
such as extreme weather events, are typical incentive based
DR programs and have been studied by some works [10, 44].
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CBP also belongs to incentive based DR programs. The dif-
ference is that existing works do not consider the DR pro-
gram that requires forward contract bidding and therefore
cannot address the uncertainty of data center DR capac-
ity. Our work focuses on how to make data centers reliable
resources when participating into CBP, and thus is comple-
mentary to the existing literature on data center DR.

3. SYSTEM MODEL
In this section, we introduce the system model used in this

paper including the data center DR capacity model and the
CBP model.

3.1 Data Center DR Capacity Model
Consider a set of independent data centersN = {1, 2, · · · ,

N} belonging to different entities participating into the CBP
issued by a utility company. For each data center i ∈ N , it
owns Mi homogeneous servers whose idle power and peak
power are P idle

i and P peak
i , respectively. According to the

power consumption model in [16], when data center i keeps
x servers active, its average power consumption can be rep-
resented as

Pi(x) = x
[
P idle
i + Ui(P

peak
i − P idle

i )
]
, (1)

where Ui is the average CPU utilization level. In the follow-
ing, we assume an M/GI/1 Processor Sharing (PS) queue is
adopted at each server [20]. If the workload arrival rate is λi
and the service rate per server is µi, then Ui can be calcu-
lated as Ui(x) = λi/(µix). We assume that when data center
i does not participate into the CBP, it keeps all servers active
and uniformly distributes the workload among its servers. In
this case, its average power consumption can be represented
as

P ref
i = Mi

[
P idle
i + U ref

i (P peak
i − P idle

i )
]
, (2)

where U ref
i = λi/(µiMi) is the average CPU utilization level.

Even though there are multiple techniques for power reduc-
tion such as workload redistribution and CPU frequency ad-
justment, we assume each data center i reduces its power
consumption only by turning off the unused servers. If mi

servers are turned off by data center i during the DR period,
then its power consumption P ′i can be calculated as

P ′i = (Mi −mi)
[
P idle
i + U ′i(P

peak
i − P idle

i )
]
, (3)

where U ′i = λi/(µi(Mi−mi)) is the average CPU utilization
level. Hence, the power reduction ∆Pi from data center i
by turning off mi servers can be calculated as

∆Pi = P ref
i − P ′i = miP

idle
i . (4)

For each data center i, the maximum number of servers
that can be turned off mi is limited by the quality of service
(QoS) requirement. To characterize QoS, we focus on the
processing delay of each data center i, which is represented
as

Ti =
1

µi − λi
Mi−mi

≤ Tmax
i , (5)

where Tmax
i is the maximum average delay of the workload

that can be tolerated at data center i. From the QoS con-
straint, we have the following inequalities

0 ≤ mi ≤Mi −
λi

µi − 1
Tmax
i

. (6)

To capture the associated non-IT power reduction such
as cooling when turning off servers, we adopt power usage
effectiveness (PUE) γi defined as the ratio of the total power
consumption to the IT power consumption in data center i.
Based on (4) and (6), the DR capacity Di of data center i
can be represented as a function of the workload arrival rate
λi as follows:

Di(λi) = γiP
idle
i

(
Mi −

λi

µi − 1
Tmax
i

)
. (7)

Note that the workload λi in the above equation is random.
Therefore, the DR capacity Di(λi) of each data center i is
also random.

3.2 Capacity Bidding Program Model
In CBP, the data centers are required to sign contracts

to commit the load reduction in advance. For instance, the
CBP offered by PG&E [4] provides the day-of and day-ahead
operations. The participants are incentivized based on their
commitments and are penalized when failing to deliver the
committed amount of load reduction. In the following, we
model CBP as a two-settlement market consisting of a for-
ward market and a spot market.

First we consider the forward market. In the forward mar-
ket, before the DR capacity is realized, a forward contract
Ci is offered by each data center i based on its ex-ante belief
in its DR capacity Di(λi). The forward contract Ci repre-
sents the committed amount of DR from data center i. Let
p denote the price of the forward contract Ci, ∀i. The rev-
enue obtained by each data center i in the forward market
is pCi. Here, the price p is defined in CBP, and is known to
the data centers beforehand.

Next we consider the spot market. For each data center i,
we propose the following procedure to settle the imbalance
between the real time DR capacity Di(λi) and its forward
contract Ci. The negative imbalance is settled at a penalty
rate a, i.e., data center i with shortfall on DR capacity in
real time suffers a penalty a[Ci − Di(λi)]+. For each unit
amount of positive imbalance, a reward rate b is issued, i.e.,
data center i with surplus gains an extra b[Di(λi) − Ci]

+

reward from the system operator. In practice, b may be as
low as 0. This imbalance settlement setting is reasonable
from the perspective of the market operator. For example,
if a data center is not able to reach the promised DR capac-
ity, then the system operator has to recruit other resources
from the spot market to guarantee the performance of CBP.
The cost incurred by the system operator during the recruit-
ment should be paid by the data center with shortfall. Here,
the penalty rate and the reward rate are constants defined
in the CBP program, and are known to the data centers.
Furthermore, we assume that a ≥ p ≥ b ≥ 0. Here, the
nonnegative assumption is to guarantee that any imbalance
is not profitable, i.e., deviating from the forward contract
impairs the profitability of the data center. The assumption
that the reward rate is not higher than the penalty rate is
to prevent the arbitrage during the DR event.

4. PARTICIPATING INTO CBP BY AGGRE-
GATING DR CAPACITIES

According to the CBP model described above, any data
center with negative imbalance in real time will be penal-
ized. Since data centers are profit maximizing, the poten-
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tial heavy penalty results in conservative or even no DR
commitment in advance. To properly manage data centers
participating into CBP, we propose to mitigate the uncer-
tainty in real time response by encouraging data centers to
participate into CBP collaboratively based on their aggre-
gated DR capacity. The inspiration is the widely accepted
intuition that aggregation can reduce uncertainty. In the
following, we study how the data centers participate into
CBP by aggregating their DR capacities.

4.1 Coalitional Game Model
In the following, we study how the data centers form into

coalition and sign the forward contract collectively based
on their aggregated DR capacity. We assume that all data
centers are price takers and profit maximizing.

Consider S data centers form into a coalition S. Since
the aggregated DR capacity of coalition S is determined
by the amount of DR capacity contributed by each data
center in coalition S, we define an aggregation level vector
α = [α1, α2, · · · , αS ], where each element 0 ≤ αi ≤ 1, ∀i
represents the aggregation level of data center i. Then it
follows that the amount of DR contributed by data cen-
ter i is αiDi(λi). The aggregated DR capacity of coali-
tion S with aggregation level vector α can be represented
as
∑S
i=1 αiDi(λi), ∀S ⊆ N . Without loss of generality, in

the following we let the dimension of the aggregation level
vector α always equal to its associated coalition size |S|.
To capture how the aggregated DR capacity is determined
by the workload arrivals, according to (7), we first define a
modified aggregated workload power consumption AS and
a constant BS associated with each coalition S as follows:

Aα,S(λ) =

S∑
i=1

αiγiP
idle
i

λi

µi − 1
Tmax
i

, (8)

Bα,S =

S∑
i=1

αiγiP
idle
i Mi, (9)

where λ = [λ1, λ2, · · · , λS ] is the workload vector for coali-
tion S. Then the aggregated DR capacity of coalition S with
aggregation level α can be calculated as

S∑
i=1

αiDi(λi) = Bα,S −Aα,S(λ). (10)

In the following, we use the coalitional game theory to
model the cooperation process among the data centers. The
coalitional game theory is a tool to analyze how the data
centers are incentivized under the cooperative setting [26].
We model the cooperation process as a coalitional game us-
ing the characteristic form (N , vα) defined as follows:

• The set of data centers N is the set of players in the
coalitional game.

• The characteristic function vα associated with any sub-
set S of N with aggregation level α is defined as:

vα(S) = max
Cα,S

pCα,S+E
[
b[(Bα,S −Aα,S)− Cα,S ]+

]
− E

[
a
[
Cα,S − (Bα,S −Aα,S)

]+]
, ∀S ⊆ N (11)

where Cα,S is the forward contract of coalition S with ag-
gregation level α. The characteristic function (11) describes

the expected profit maximization problem of any coalition
S under any aggregation level.

To solve the expected profit maximization problem above,
the coalition needs to properly select a forward contract. For
any coalition S, we show that the optimal solution C∗α,S can
be obtained in a closed form. Before that, we first introduce
some required notations. Denote the cumulative distribution
function (CDF) of Aα,S as Fα,S(z), which is defined as

Fα,S(z) = Pr
(
Aα,S(λ) ≤ z

)
. (12)

Given the historical workload information, the CDF of the
aggregated workload power consumption can be easily con-
structed. It follows that the quantile function F−1

α,S(τ) is
defined as

F−1
α,S(τ) = inf

{
z ∈

[
Amin
α,S , A

max
α,S

]
: τ ≤ Fα,S(z)

}
, (13)

where Amin
α,S and Amax

α,S are the lower and upper bound of
the modified aggregated workload power consumption Aα,S
(9), respectively. Given the CDF of the modified aggregated
workload power consumption Aα,S of coalition S, the opti-
mal forward contract C∗α,S can be obtained in a closed form
as shown in the following theorem.

Theorem 1. The optimal forward contract for any coali-
tion S with aggregation level α can be obtained as follows:

C∗α,S = Bα,S − F−1
α,S(τ∗), where τ∗ =

a− p
a− b . (14)

Proof. Note that (11) can be rewritten as

vα(S) = pCα,S − a
∫ Amax

α,S

Bα,S−Cα,S

(Cα,S − z)fα,S(z) dz

+ b

∫ Bα,S−Cα,S

Amin
α,S

(z − Cα,S)fα,S(z) dz, (15)

where fα,S is the probability density function of the ag-
gregated workload power consumption of coalition S with
aggregation level α. Using Leibniz integral rule and the
first-order optimality condition, we have

p−a (1− Fα,S(Bα,S − C∗i ))+bFα,S(Bα,S−C∗i ) = 0. (16)

Then it is straightforward to see that Theorem 1 holds.

By replacing the forward contract Cα,S in (15) with the
optimal solution (14), the optimal expected profit for coali-
tion S with aggregation level α is represented as

vα(S) = a

∫ 1

τ∗
F−1
α,S(z) dz + b

∫ τ∗

0

F−1
α,S(z) dz. (17)

4.2 Grand Coalition Formation
Intuitively, the uncertainty of the aggregated DR capacity

decreases as more data centers join into the coalition. In the
following, we prove that signing the forward contract as a
single DR provider can increase the total expected profit of
the coalition. Then, it is straightforward to see that it is
to the joint benefit of the data centers to form the grand
coalition N and participate with their full DR capacities.
First, we characterize the optimal expected profit defined in
(11).
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Lemma 1. The optimal expected profit vα(S) of any coali-
tion S with aggregation level vector α has the following prop-
erties:

1. Positive Homogeneity: For any nonnegative scalar ε,
we have that vεα(S) = εvα(S).

2. Supper Additivity: For any two disjoint coalitions S1
and S2 whose aggregation vectors are α, we have that
vα(S1 ∪ S2) ≥ vα(S1) + vα(S2).

3. Nondecreasing over α: For any two aggregation vec-
tors, if α � α′, then vα(S) ≥ vα′(S).1

Proof. See Appendix A for detailed proof.

According to Lemma 1, we have the following observa-
tions. First, using the supper additivity property, it follows
that if there are two disjoint coalitions S,S ′ ⊂ N whose
aggregation level are α = 1, then we have

v1(S) + v1(S ′) ≤ v1(S ∪ S ′). (18)

The inequality above indicates that forming into one coali-
tion and signing the forward contract collectively based on
the aggregated DR capacity can generate larger profit. There-
fore, any two disjoint coalitions will merge into a single coali-
tion with a larger size and participate into CBP as a single
DR provider to maximize the expected profit. Since the
grand coalition is the one with the largest size, no matter
what initial partition is formed in N , the data centers will
form the grand coalition N to maximize the expected profit.
Second, since the expected profit is nondecreasing over the
aggregation level vector α, then for any coalition, its op-
timal expected profit can be obtained by setting α = 1,
i.e., all data centers in coalition S fully participate into the
DR program. Combining the above two observations, we
conclude that the data centers can generate the maximum
expected profit by forming into the grand coalition N and
participating into the CBP with fully aggregated DR ca-
pacity

∑N
i=1Di(λi). For simplicity, in the following we use

v(N ) to represent the expected profit obtained by the grand
coalition with aggregation level α = 1.

5. PAYOFF ALLOCATION
In Section 4, we have shown that the data centers will form

into the grand coalition N in our game. We have adopted
v(N ) to describe the optimal total amount of expected profit
received by the grand coalition, however, we have not explic-
itly specified the payoff obtained by each data center in the
coalition. In the following, we investigate how to fairly dis-
tribute the total profit among the data centers in the grand
coalition. Note that the data centers are assumed to be ra-
tional in our game. The intuitive solution that uniformly
distributes is not applicable since some data centers might
be able to obtain higher profit if it participates into CBP
individually. Therefore, the payoff allocation should fairly
distribute the profit among the data centers so as to stabilize
the grand coalition, i.e., no deviation is profitable. In the
coalitional game theory, the set of such allocations is called
the core of the game, which is defined as [28]

C =

{∑
i∈N

πi = v(N ),
∑
i∈N

πi ≥ v(S), ∀S ⊆ N

}
, (19)

1The operator � denotes element wise vector comparison,
i.e., if we have αi ≥ α′i, ∀i ∈ [1, S], then α � α′.

where πi is the payoff obtained by data center i in the grand
coalition. The Shapley value [32, 34] and the nucleolus [29]
are two solution concepts that are widely adopted in the
existing literature, however, they are not applicable in our
game. In the following, we first explain why they cannot
be applied to our game. Then we design a payoff allocation
which is proved to be in the core of the game.

5.1 Conventional Payoff Allocations

5.1.1 Shapley Value
In the coalitional game theory, the Shapley value is a well-

developed allocation, which can be calculated in a closed
form. Specifically, it can be calculated as

πi =
∑

S⊆N\{i}

|S|!(N − |S| − 1)!

N !
[v(S ∪ {i})− v(S)], (20)

where |S| is the size of coalition S. Furthermore, four prop-
erties, i.e., efficiency, symmetry, dummy player and additiv-
ity, can be satisfied simultaneously using the Shapley value.
Unfortunately, the Shapley value is not guaranteed to be in
the core of the coalitional game. Although it can be guaran-
teed to be in the core of a convex coalitional game defined
as

v(S ∪ S ′) ≥ v(S) + v(S ′)− v(S ∩ S ′),

where S and S ′ are any two sub-coalitions of N , our game
is not convex as shown in Appendix B, which implies that
the Shapley value is not guaranteed to be in the core of our
game. Therefore, the Shapley value cannot be used in our
game.

5.1.2 Nucleolus
In the coalitional game theory, the excess defined as

e(π,S) = v(S)−
∑
i∈S

πi (21)

is used to model the dissatisfaction of data centers in coali-
tion S for an allocation vector π. Different from the Shapley
value which satisfies the four properties mentioned before,
the nucleolus focuses on designing an allocation such that
the dissatisfaction of data centers can be minimized. The
nucleolus of a coalitional game always exists and is unique.
Moreover, if the core is nonempty, the nucleolus lies in the
core. However, calculating the nucleolus is computationally
expensive, i.e., O(2N ) linear programs need to be solved.
Therefore, the nucleolus is not efficient to be used for our
problem.

5.2 Proposed Allocation
Given that the traditional payoff allocations are not appli-

cable in our game, in the following, we propose an alternate
solution, which can stabilize the grand coalition.

According to Lemma 1, the data centers will form into the
grand coalition N and sign the forward contract based on
the fully aggregated DR capacity

∑N
i=1Di(λi) so that the

maximum total expected profit can be obtained.
To divide the expected profit among the data centers, we

calculate the expected payoff for each tenant i as follows:

πi =
∂vα(N )

∂αi
|α=1, ∀i ∈ N . (22)
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In the following, we show that the payoff allocation (22) has
four properties denoted as stability, fairness, low computa-
tion complexity and efficiency.

First of all, we discuss the stability property. The sta-
bility property is two fold. Firstly, the proposed payoff al-
location guarantees that no deviation is profitable to any
sub-coalition of N . Secondly, no data center has the ability
to manipulate its expected profit, i.e., no data center can
improve its expected profit by forming into small coalitions
first and participate into the CBP. In the following, we first
show that our proposed payoff allocation (22) guarantees no
sub-coalition can benefit from deviation using the following
theorem.

Theorem 2. Our coalitional game has a nonempty core.
Furthermore, the payoff allocation (22) lies in the core of
our coalitional game.

Proof. See Appendix C for the detailed proof.

Note that monetary payoff is adopted in our coalitional game,
which is transferrable among data centers. According to
the Bondareva-Shapley theorem [28], our game is balanced
since it has a nonempty core. According to the definition
(19), Theorem 2 also shows that if the expected profit gen-
erated by the grand coalition is allocated using (22), no sub-
coalition has the incentive to deviate from it. Next, we dis-
cuss how the proposed payoff allocation prevents the data
centers manipulating their expected profit. Since coopera-
tion is encouraged under our setting, the data centers might
potentially manipulate the game when forming into groups,
i.e., the group may have the capability to improve its pay-
off by behaving strategically when participating into CBP.
For example, the data centers with high DR capacities can
form into a group, whose aggregated DR capacity occupies
a large fraction of the fully aggregated DR capacity of all
data centers. The group may reserve part of its DR capacity
when participating into CBP, expecting its expected profit
can be improved. The proposed payoff allocation prohibited
the gain of market power in our coalitional game. Since the
payoff received by each data center is the derivative with re-
spect to its own aggregation level, participating into the DR
program by forming into a group beforehand cannot increase
the payoff received by each data center in the group com-
paring to participating individually, i.e., following the payoff
allocation (22), no coalition has the ability to manipulate its
expected profit.

One desired property of the Shapley value is fairness. Our
proposed allocation also satisfies fairness in the following
sense. For each data center i, its expected payoff πi captures
its marginal contribution to the aggregation. Therefore, two
data centers with the same contribution should receive the
same expected payoff. Since our payoff allocation not only
stabilizes the coalitional game, but also satisfies fairness, it
outperforms the Shapley value in our case.

Comparing with the nucleolus, the payoff allocation (22)
has its strength so that it is more suitable for our coalitional
game. According to (22), our proposed payoff allocation
only requires to solve O(N) equations, while the nucleolus
requires to solve O(2N ) linear programs. It is obvious that
our proposed payoff allocation has much lower computation
complexity than the nucleolus. Therefore, comparing to the
nucleolus, the proposed allocation is more scalable to the
scenario with a large set of data centers participating into
DR program.

Table 1: Simulation Parameters

Tmax
i (ms) Mi µi(request/s)

data center 1 6 20000 500
data center 2 5 18000 450
data center 3 4 16000 350
data center 4 3 14000 300

The last observation is that the proposed allocation is ef-
ficient. Based on our previous analysis, no coalition has the
ability to generate higher expected profit than the grand
coalition with fully aggregated DR capacity. Following the
payoff allocation (22), the total expected profit generated by
the grand coalition is distributed to all data centers based on
their marginal contributions, i.e., no profit loss is incurred
during the payoff allocation process.

6. NUMERICAL EVALUATION
In this section, trace driven simulations are conducted.

We first introduce our simulation settings. Then we show
the simulation results to illustrate the effectiveness of our
proposed approach.

6.1 Simulation Setup
Data center setup. We consider a set of four inde-

pendent data centers N = {1, 2, 3, 4}. The total number
of servers for each data center is 20000, 18000, 16000 and
14000, respectively. We assume the idle power for all servers
is 50 W. Furthermore, the PUE for all data centers are set
as 1.5.

Workload description. The real-world workload data
we use for evaluation is the cluster trace data of Google [31,
41]. The original workload is recorded for one month. We
repeat it and extend it to 42 days, i.e. the length of the
workload trace is 1000 hours.

The service rate of a server from each data center is set to
be 500, 450, 350, and 300 requests per second, respectively.
The maximum delay tolerance of the workload of each data
center is set to be 6, 5, 4 and 3 ms, respectively. All the
parameter settings are summarized in Table 1.

CBP description. In our simulations, we assume the
CBP requires the data centers to sign the forward contracts
day ahead. Furthermore, the CBP signals are issued hourly,
i.e. the data centers are required to sign 24 forward contracts
with the utility company day ahead. We fix the price p for
the forward contract as $1 per kW, the penalty rate a as
$1.5 per kW, and the reward rate b as $0.5 per kW.

Finally, all our simulations are conducted on a desktop
with an Intel i7 3.4 GHz CPU and 8GB RAM using MAT-
LAB R2015a.

6.2 Performance Evaluation
In this part, we present the simulation results. We simu-

late how the data centers participate into the DR program
under the cooperative setting. To demonstrate the benefits
brought by cooperation, the individual participation with-
out cooperation scenario is chosen as the baseline for com-
parison. In the following, all numerical results are averaged
across days.

First, we construct the empirical distribution of the nor-
malized workload arrivals as shown in Fig. 1. Then the em-
pirical distribution of the DR capacity of each data center
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Figure 1: The empirical distribution of the normalized work-
load arrivals of the data centers (DC) at hour 10.
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Figure 2: The empirical distribution of the DR capacities of
the data centers (DC) at hour 10.

i at each hour h obtained using (7) can be constructed to
approximate the theoretical distribution at the same hour.
Fig. 2 presents the CDF of the DR capacity of each data
center at hour 10.

According to Theorem 1, we can obtain the optimal con-
tract C∗S for any coalition S. Since the data centers are
profit maximizing, given the DR capacity is uncertain due
to the random workload arrivals, each data center will par-
ticipate into the DR program conservatively. However, un-
der the cooperative setting, the coalition will behave more
aggressively seeking larger profits. We use Fig. 3 to show the
difference of the data center DR commitment in advance be-
tween the baseline scenario and the grand coalition scenario
during one day, which can be used to characterized how
conservative are the data centers when participate into the
CBP. The contract levels shown in Fig. 3 are averaged across
days. In Fig. 3, the contract level for the baseline scenario
is obtained by summing up the contracts of all data centers.
It can be observed that the grand coalition commits more
amount of DR than the summation of the commitment of
each individual data center without cooperation. The rea-
son is that after cooperation, the grand coalition has higher
confidence on the aggregated DR capacity. Therefore, it is
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Figure 3: The contract level of the baseline scenario and the
grand coalition scenario for one day.
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Figure 4: The total profit of the baseline scenario and the
grand coalition scenario along a 24 hour time span. The
profit for the baseline scenario is obtained by summing up
the contracts of each data center.

to the joint benefit of all data centers in the grand coalition
to behave less conservatively so that the maximum profit
can be obtained. The improvement of the confidence on the
aggregated DR capacity comes from the statistical diversity
of the workload arrival of different data center.

In Fig. 4 we further show that the less conservative behav-
ior of the grand coalition can lead to a larger profit than the
baseline scenario. Two observations can be made in Fig. 4.
The first observation is that the profit generated by grand
coalition is much higher than the summation of the profit
generated individually. The average improvement is 60.75%.
This validates the supper additivity property presented in
Section 4. Another observation is that in Fig. 4, the curve for
the total profit of the grand coalition is smoother than that
of the curve for the baseline scenario, i.e., the variance of
the profit generated by grand coalition is much smaller than
that of the baseline scenario. Specifically, the variance of
the total profit of grand coalition is 35.94% lower than that
of the baseline scenario. This observation indicates that co-
operation can stabilize the profit generation ability of the
coalition. Both observations demonstrate that the data cen-
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(a) Profit of each data center at hour 10
when price penalty ratio r = 2/3.
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(b) Profit of each data center at hour 10
when price penalty ratio r = 1/2.
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(c) Profit of each data center at hour 10
when price penalty ratio r = 1/3.
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(d) Contract level over one day time period
when price penalty ratio r = 2/3.
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(e) Contract level over one day time period
when price penalty ratio r = 1/2.

Hour

0 5 10 15 20 25

C
o
n
tr

a
c
t 
L
e
v
e
l 
(M

W
)

0.9

1

1.1

1.2

1.3

1.4

1.5
Contract Level Comparison

Baseline

Grand Coalition
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Figure 5: Fig. 5a to Fig. 5c show how the price penalty ratio impacts the expected profit of each data center. Fig. 5d to Fig.
5f show how the grand coalition behaves in the forward market.
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Figure 6: The percentage improvement of each data center
after cooperation.

ters will benefit from the cooperation.
Next, we show how much each data center can benefit

from the cooperation process. Fig. 6 quantifies the percent-
age improvement of each data center after cooperation. We
can observe that data center 1 benefits least from coopera-
tion. On the contrary, data center 4 benefits most from the
cooperation. The reason is two fold. First, the expected DR
capacity of data center 1 is highest, while that of data center
4 is lowest. Therefore, the expected profit of data center 1
is much higher than that of data center 4 under the base-
line scenario, which lowers the improvement of data center
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Figure 7: The profit of each data center at hour 10.

1. Second, according to Fig. 2, we can see that comparing to
data center 4, data center 1 has higher flexibility and lower
probability being penalized. Therefore, data center 4 can
benefit more from cooperation by exploiting the statistical
diversity. To further clarify how the data centers benefit
from cooperation, in the following, we show the profit ob-
tained by each data center in a specific hour. Fig. 7 shows
each data center’s profit at hour 10. The height of each bar
represents the profit obtained by each data center at hour
10. The yellow bar on the top of each bar is the profit im-
provement obtained via cooperation. It can be observed that
data center 1 obtains the largest profit under both scenarios,
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Table 2: The profit improvement of each data center versus
the price penalty ratio.

r = 2/3 r = 1/2 r = 1/3
data center 1 33.44% 25.58% 18.03%
data center 2 41.63% 27.03% 20.64%
data center 3 66.64% 39.45% 30.81%
data center 4 75.66% 41.43% 33.09%

while data center 4 obtains the lowest profit. Furthermore,
we can see that data center 4 benefits most from coopera-
tion. This is because cooperation decreases the uncertainty
level of its DR capacity.

Finally, we analyze how the profit received by each data
center will change with respect to the parameters defined by
the CBP, i.e. how the forward price p, the penalty rate a and
the reward rate b will impact the expected profit obtained
by each data center. In the following we explore the impact
by adjusting the price penalty ratio r defined as

r =
p

a
. (23)

In our simulations, we fix the forward contract price p and
the reward rate b, and set the penalty rate a as $1.5 per
kW, $2 per kW and $3 per kW to adjust the price penalty
ratio r. Fig. 5 shows the profit obtained by each data center
at hour 10 with different price penalty ratio r. The first
observation is that with the decrease of the price penalty
ratio, the expected profit of each data center decreases. The
reason is two fold. The most intuitive explanation is that
increasing the penalty rate will surely decrease the expected
profit if the DR capacity distribution is fixed. Furthermore,
note that the price penalty ratio indicates how heavily the
CBP will penalize the data center with negative imbalance.
Therefore, decreasing the price penalty ratio will lead the
data centers to behave more conservatively when participat-
ing into the CBP, which directly decreases the profit. The
conservative level can be measured by the contract level as
shown in Fig. 5d to Fig. 5f. It is obvious that the av-
erage forward contract level decreases with respect to the
decrease of the price penalty ratio r. Specifically, the aver-
age contract levels of the grand coalition with price penalty
ratio 2/3, 1/2 and 1/3 are 1.78 MW, 1.47 MW and 1.22
MW, respectively. Another observation is that decreasing
the price penalty ratio will decrease the improvement ob-
tained from cooperation, i.e, the fraction of the yellow bars
decrease as the price penalty ratio decreases. The detailed
result is listed in Table 2. The idea behind this observation
is that the high penalty rate will result in conservative be-
haviors in case of possible heavy penalty when participating
into the CBP. Without loss of generality, in the following we
consider an extreme case. When the penalty rate goes to
infinity, the improvement from cooperation cannot increase
since no matter how much the grand coalition commits in
the forward contract, the penalty term will result in negative
infinity profit.

7. CONCLUSION
Data centers are promising resources for DR programs.

However, the randomness of data center DR capacities makes
data centers unreliable DR resources. In this paper, we fo-
cus on how to make data centers reliable DR resources by

considering data centers participating into CBP in which
data centers are required to sign forward contracts for DR
committment. We have shown that the actions in advance
are unfavorable may drive the data centers out of the DR
market if the uncertainties of the DR capacities in real time
is not properly addressed. We have proposed that the data
centers can cooperate with others and participate into CBP
as a single DR provider to maximize expected profit by ex-
ploiting the statistical diversity. A coalitional game based
approach has been used to study the cooperation process
among the data centers, and we have shown that the grand
coalition will be formed. To properly allocate the expected
profit generated by coalition, we have designed a payoff al-
location which can stabilize our game, satisfy fairness, and
is efficient. Finally, trace driven simulation results are pre-
sented for demonstration.
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APPENDIX
A. PROOF OF LEMMA 1

First we prove the positive homogeneity property. For any
scalar ε ≥ 0, we can obtain the CDF of the random variable
εAα,S(λ) as

Fεα,S(z) = Pr (εAα,S(λ) ≤ z) = FS
(z
ε

)
.

Let F−1
εα,S(τ) be the quantile function of ε

∑S
i=1 αiDi. Then

according to the definition of the quantile function, the quan-
tile function F−1

εα,S(τ) can be characterized as

F−1
εα,S(τ) = εF−1

S (τ).

According to (11), we can prove the positive homogeneity
property as follows:

vεα(S)

= a

∫ τ∗

0

F−1
εα,S(z) dz − b

∫ 1

τ∗
F−1
εα,S(z) dz−

= ε

(
a

∫ τ∗

0

F−1
S (z) dz − b

∫ 1

τ∗
F−1
S (z) dz −

)
= εvα(S).

Next we prove the supper additivity property. Suppose
the two optimal forward contracts corresponding to the fully
aggregated DR capacities ε

∑S1
i=1 αiDi and ε

∑S2
i=1 αiDi are

C∗S1 and C∗S2 , respectively. We further denote the optimal
solution for coalition S1∪S2 as C∗S1∪S2 . Note that C∗S1 +C∗S2
is a feasible solution for the expected profit maximization
problem of coalition S1 ∪ S2. Then it is straightforward to
see that v(S1) + v(S2) ≤ v(S1 ∪ S2).

Third, we prove the nondecreasing property. Because of
the supper additivity property, in the following, we focus on
the grand coalition. Suppose we have two aggregation level
vectors α and α′, where α′ � α. Then it is obvious that
for any element in vector α′ −α,

0 ≤ α′ − α ≤ 1.

Using the supper additivity property, we have

vα′(N ) ≥ vα(N ) + vα′−α(N ). (24)

The inequality above indicates the nondecreasing property.

B. PROOF OF NONCONVEX GAME
Here, we use a counterexample to prove our game is not

convex. Consider a colo with a set of data centers N =
{1, 2, 3} housing in it. Denote their normalized DR capac-
ities as D1, D2 and D3. Assume the distribution of the
normalized DR capacity of any data center i ∈ N is

Di =

{
0.5 w.p. 0.5

1 w.p. 0.5
∀i ∈ N . (25)

We further assume that the realizations of D3 always equal
to that of D2. Consider when the penalty rate a and reward
rate b are deterministic. Suppose the forward contract price
p = 1.1, a = 1.5, b = 0.5 and e1 = e2 = e3 = 0.1. Then the
characteristic function can be calculated as follows:

v({1}) = v({2}) = v({3}) = 0.5;

v({1, 2}) = 1.375

v({1, 3}) = 1.375;

v({2, 3}) = 1;

v({1, 2, 3}) = 2;

Consider two coalitions S = {1, 2} and S ′ = {1, 3}. Then
we have

v(S ∪ S ′) = v(N ) = 2 < v(S) + v(S ′)− v({1}) = 2.25.

Therefore, our coalitional game is not convex.

C. PROOF OF THEOREM 2
We prove Theorem 2 by demonstrating the payoff alloca-

tion (22) lies in the core of our coalitional game. Note that
there are two requirements in the definition of the core (19).
First we prove that our solution satisfies

∑
i∈N πi = v(N )

as defined in (19). Note that in our case the colo operator
is trustworthy, and it will allocate all the profits to the data
centers. Therefore, there is no welfare loss in our case. Then
it is straightforward to see π satisfies

∑
i∈N πi = v1(N ).

Next, we prove that our proposed payoff allocation satisfies∑
i∈N πi ≥ v(S), ∀S ⊆ N as defined in (19). Consider an

arbitrary coalition S, ∀S ⊆ N . If each data center i ∈ S
holds ωi = Di/

∑N
i=1Di fraction of the aggregated DR ca-

pacity, then using positive homogeneity property, we have∑
i∈S πi = vω(S), where ω = [ω1, ω2, · · · , ωS ]. Since the

grand coalition N explores more statistical diversity than
coalition S ⊆ N , and ω has no impact on the statistical
diversity, the inequality above holds. Therefore, the second
requirement holds for our proposed solution as well. Then it
is straightforward to see that the payoff allocation (22) lies
in the core of our coalitional game.
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