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Abstract—Federated learning is a promising tool in the
Internet-of-Things (IoT) domain for training a machine learning
model in a decentralized manner. Specifically, the data own-
ers (e.g., IoT device consumers) keep their raw data and only
share their local computation results to train the global model
of the model owner (e.g., an IoT service provider). When exe-
cuting the federated learning task, the data owners contribute
their computation and communication resources. In this situa-
tion, the data owners have to face privacy issues where attackers
may infer data property or recover the raw data based on the
shared information. Considering these disadvantages, the data
owners will be reluctant to use their data to participate in fed-
erated learning without a well-designed incentive mechanism.
In this article, we deliberately design an incentive mechanism
jointly considering the task expenditure and privacy issue of
federated learning. Based on a differentially private federated
learning (DPFL) framework that can prevent the privacy leak-
age of the data owners, we model the contribution as well
as the computation, communication, and privacy costs of each
data owner. The three types of costs are data owners’ private
information unknown to the model owner, which thus forms an
information asymmetry. To maximize the utility of the model
owner under such information asymmetry, we leverage a 3-D con-
tract approach to design the incentive mechanism. The simulation
results validate the effectiveness of the proposed incentive mech-
anism with the DPFL framework compared to other baseline
mechanisms.

Index Terms—Differential privacy, federated learning,
multidimensional contract, incentive mechanism.
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I. INTRODUCTION

W ITH the growing popularity of artificial intelligence
(AI) in the Internet-of-Things (IoT) area, the AI-based

IoT applications are gradually employed in all aspects of our
daily life, such as transportation [1], [2]. The AI-based IoT
applications generate a large amount of data that feeds into
the AI system for continuous learning. Specifically, the model
owner (e.g., an IoT service provider) periodically gathers the
data from the mobile devices of the data owners (e.g., IoT ser-
vice consumers) and trains the model over the collected data in
centralized servers. However, the collected data usually con-
tains the data owners’ private information (e.g., service usage
patterns) or profile information (e.g., gender and age). If the
model owner is untrustworthy or the centralized servers are
invaded by attackers, the data owners’ data will be abused or
stolen, causing the economical loss to the data owners.

To alleviate the privacy risk, federated learning is proposed
as a promising distributed learning scheme. Data owners train
the local models over their private data and only upload
the local computation results instead of uploading their raw
data to the model owner. The model owner aggregates all
the local computation results to improve its global model.
Under this setting, the data owners can control their raw
data while the model owner can obtain a global model with
good performance. Since inception by Google [3], federated
learning has drawn great attention in IoT area [4]–[7].

Although in federated learning the data owners do not share
their raw data, they still face the risk of privacy leakage.
For example, based on the computation results from a data
owner, attackers can infer whether a sample is in the data
owner’s data set by using membership inference attacks [8], or
recover the data owner’s raw data by construction attacks [9].
The attackers may be an untrustworthy model owner in the
system or an eavesdropper in the communication network.
There also exits the case that a malicious data owner can
infer the feature distributions or data property of a specified
data owner according to the global model downloaded from
the model owner [10], [11]. Considering such risks, the data
owners will be reluctant to participate in federated learning.
The low participation rate of the data owners will lead to the
poor performance of the trained global model.

Federated learning has to consider incentivizing the data
owners to join the learning process. When data own-
ers execute the federated learning tasks, their devices
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consistently consume computation and communication
resources. Also, the data owners still worry about the data
privacy issue. Without a well-designed economic incentive,
the self-interested data owners are not willing to take part
in federated learning. There are three main difficulties in
designing a practical incentive mechanism for federated
learning. First, it is hard to evaluate the contribution of data
owners to the performance of the trained models. Without
accurate evaluation of the contribution, the model owner
cannot correctly reward the data owners, leading to financial
loss or low participant rate [12]. Second, it is difficult
to model the multidimensional cost of data owners. The
recent incentive mechanism mainly modeled the cost of
the data owners as their computation and communication
expenditures but ignored their privacy risk which is also an
important cost [12]–[14]. Third, there exists multidimensional
information asymmetry since the self-interested data owners
prefer to hide their multiple types of costs to gain more
benefits. The multidimensional information asymmetry
complicates the incentive design [15], [16].

In this article, we aim to eliminate the obstacles that hin-
der data owners from participating in federated learning, such
as privacy issues and naive incentives. We first analyze a dif-
ferentially private federated learning (DPFL) framework that
injects artificial Gaussian noise to the local model for allevi-
ating the privacy issue. Based on the DPFL framework, we
then proposed a 3-D contract-based incentive mechanism by
considering the information asymmetry and the heterogeneous
types of costs. The simulation results validate the efficiency
of the designed incentive mechanism with the DPFL frame-
work compared to other incentive mechanisms. In summary,
the main contributions of this article are as follows.

1) We design an incentive mechanism in a DPFL frame-
work that is able to prevent privacy leakage in federated
learning. To the best of our knowledge, we are the first
to study the incentive mechanism jointly considering the
task expenditure and privacy issue of federated learning.

2) By theoretical analysis and experimental evaluation of
the DPFL framework, we model the data owners’ con-
tribution and heterogeneous costs consisting of compu-
tation, communication, and privacy cost. These physical
models essentially support the design of the incentive
mechanism.

3) Considering the information asymmetry between the
model owner and the data owners, we design the incen-
tive mechanism by using a 3-D contract, where the
model owner provides the contract items specifying the
training data size and offering corresponding rewards
according to different cost types of data owners.

The remainder of this article is organized as follows. Section II
introduces the related works of the privacy concerns and incen-
tive mechanisms of federated learning. Section III describes the
established DPFL framework and related analysis. Section IV
describes the system model based on the DPFL framework.
Section V provides a detailed description of multidimensional
contract design problem and solution. The simulation results
and performance evaluation are shown in Section VI. Finally,
the conclusion remarks are made in Section VII.

II. RELATED WORKS

A. Privacy Concerns in Federated Learning

Despite the data owners do not share private data during the
federated learning process, they still face privacy issues. The
shared computation results of the data owners may be used by
attackers for inferring the data owners’ private information [8]
or reconstruct the raw data [9]. The downloaded global model
may be used by attackers for inferring the feature distribution
or property of a specified data owner [10], [11].

To address the privacy issue, there emerge many studies
focused on designing defense methods. Among them, homo-
morphic encryption and secure multiparty computation are
popular methods defending against the attacks which are based
on the shared local computation results [17]. But these meth-
ods are only applicable to simple tasks and cannot defend
against the attacks which are based on the global model. DP
provides a practical privacy analysis and is widely adopted
in big data privacy-preserving systems [18]–[21] and private
distributed learning systems [17], [22]–[24]. The DP-based
distributed learning schemes offer a comprehensive defense
against the aforementioned attacks. However, most of these
studies made an optimistic assumption that the data owners
voluntarily join federated learning, which is not seldom seen
in practice. To incentivize the data owners to join DP-protected
federated learning, we propose a contract-based incentive
mechanism based on the established DPFL framework.

B. Incentive Mechanisms for Federated Learning

In recent years, there is an increasing number of stud-
ies focused on designing incentive mechanisms for federated
learning. There are two key issues to be addressed for design-
ing the incentive mechanism. The first is evaluating the
contribution of each data owner which affects the profit of
the model owner. The works in [13], [14], and [25] modeled
the contribution as the completion time of learning tasks. The
works in [12], [16], [26], and [27] modeled the contribution
as the trained model performance depending on the training
data size. The second is modeling the costs of data owners.
Most of the works (in [12]–[14], [16], [25], and [27]) mod-
eled the cost as computation and communication expenditures.
Hu and Gong [28] considered the privacy issue in FL and
proposed a DP budget-based incentive mechanism. However,
none of them modeled the contribution and cost of the data
owners and designed the incentive mechanism by jointly con-
sidering the task expenditure and privacy issue of federated
learning.

We are motivated to design the incentive mechanism for fed-
erated learning jointly considering these two factors. Based
on the established DPFL framework that adopts the DP for
preventing privacy leakage in the federated learning process,
we model the data owners’ contribution by evaluating the
trained model performance and model their costs by analyz-
ing task expenditure and privacy risk. In order to deal with
the information asymmetry between the model owner and the
data owners, we use a multidimensional contract approach
to design the incentive mechanism in the DPFL framework.
Compared with the traditional single-dimensional contracts,
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the multidimensional contract allows the principal (the model
owner) to extract more detailed private information of agents
(the data owners) and thus design the more precise contracts.
Lim et al. [16] also adopted the multidimensional contract
approach to incentivize the data owners. But they focused on
the UAV-based scenarios and, moreover, did not consider the
privacy issue, so our models are different and our mechanisms
are not comparable.

III. DIFFERENTIALLY PRIVATE FEDERATED LEARNING

In this section, we first introduce the federated learning and
the threat model. Then we describe the adopted DPFL frame-
work against the threats. The privacy analysis and convergence
analysis of the DPFL framework are also given.

A. Federated Learning and Threat Model

Consider a federated learning setting that consists of a
model owner and I data owners. The data owner i has a local
data set Di = {(xi, yi)} including sample-label pairs (xi, yi)

from its device. For a machine learning problem, we typi-
cally take fi(w) = (1/Di)

∑
�(xi; yi;w) as the objective, where

Di = |Di| denotes the size of local data set and �(xi; yi;w)
is the loss of the prediction on the local data set with model
parameters w. The goal of the model owner is to learn a model
w from the data owners while they are allowed to keep their
local data sets. Therefore, each data owner trains the model
on their local data sets and the model owner aggregates the
model parameters from the data owners. The objective can be
expressed by f (w) =∑I

i=1pifi(w), where pi = [Di/(
∑I

i=1 Di)]
denotes the weight of the local model from the data owner i.

We consider that the adversary can be the “honest-but-
curious” model owner or the malicious data owner in the
system as well as the eavesdropper in the communication
network. The model owner would honestly execute federated
training operation, but is curious about the data owners’ pri-
vate information and may recover their training data from the
uploaded models or gradients [9]. Meanwhile, based on the
downloaded global model, some malicious data owner could
adopt the auxiliary data to infer the property of a target data
owner [11], or use generative adversary network (GAN) to
learn its feature distribution [10]. Besides, the uploaded and
downloaded message may be eavesdropped during the trans-
mission. The eavesdropper will also infer or reconstruct the
data owner’s private data based on the message but will not
actively inject false messages or intervene in the message
transmission. We consider that the data owners will transmit
the correct computed results and the data pollution attacks by
the malicious data owners are not considered in this article.

B. DPFL Framework

We aim to establish a federated learning framework that
enables the data owners against the above threat model with-
out sacrificing much accuracy of the trained model. (ε, δ)-DP
provides a standard to measure privacy risk [29], where the
parameter ε denotes the privacy budget (detailed definition
please see Appendix A). The lower ε, the data owners have
a lower risk of privacy leakage. Inspired by works [17], [22],

Algorithm 1 DPFL Algorithm
Input: The I data owners are indexd by i; B is the local mini-
batch size, E is the number of local epochs; η is the learning
rate; T is the communication rounds; σi is the noise scale ;
the local iteration is indexed by 0 ≤ s ≤ |βi|E
Output: Global model wT

1: initialize w0
2: for each round t from 0 to T − 1 do
3: The model owner sends wt.
4: for all I data owners in parallel do
5: Update the local parameters as wi

t,0 = wt

6: βi ← split Di into batches of size B
7: for each local epoch from 0 to E − 1 do
8: for batch bi ∈ βi do
9: Update the local parameters as

10: wi
t,s ← wi

t,s−1 − η
B∇�(wi

t,s; bi)

11: Add noise into local parameters
12: wi

t,s = wi
t,s +N (0, σ 2

i Id)

13: end for
14: end for
15: Send the local parameters wi

t,|βi|E to the model
owner

16: end for
17: The model owner aggregates the parameters
18: wt+1 ←∑I

i=1piwi
t,|βi|E

19: end for
20: return wT

we set up the DPFL framework where each data owner adds
artificial Gaussian noise in the local model at each iteration for
guaranteeing (ε, δ)-DP of its local data. The overall process is
summarized in Algorithm 1. Specifically, at round 0 ≤ t ≤ T−1,
each data owner i receives the global model wt from the model
owner and updates its local model wi

t,0 = wt (step 5). Each
data owner splits its local data set Di into batches βi with
batch size B (step 6). Thus, the expected local iteration number
is |βi|E = (Di/B)E, where E is the local epoch number and
0 ≤ s ≤ |βi|E. At each local iteration, each data owner updates
the local model wi

t,s by learning a batch of data bi,s (steps
9 and 10). Then the local model is added with the Gaussian
noise N (0, σ 2

i Id) (steps 11 and 12), where σi is the Gaussian
variance and d is the model dimension. At the end of each
round, each data owner sends its local model to the model
owner (step 15) and the model owner performs the weighted
averaging to obtain new global model (steps 17 and 18).

C. Privacy Analysis

Now we analyze the DP guarantee of the established DPFL
framework. We aim at using DP is to prevent the attackers
from extracting sensitive information from the uploaded local
models and the downloaded global model. The downloaded
global model is the aggregation of the uploaded noisy local
models at each round. Therefore, as long as the local mod-
els are differential private, the global model can also defend
against privacy leakage. Instead of using DP directly, we use
Renyi differential privacy (RDP) to tightly account for the
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privacy loss of the data owner and then convert it to a DP
guarantee (detailed definition please see Appendix A). By
using the RDP, we compute the overall privacy guarantee for
a data owner after T rounds of training and give the (ε, δ)-DP
guarantee in Theorem 1.

Theorem 1: For any δ ∈ (0, 1) and ε > 0, Algorithm 1 sat-
isfies (ε, δ)-DP when its injected Gaussian noise N (0, σ 2

i Id)

is chosen to be

σi =
√

14αη2ET

BDi(ε − log(1/δ)/(α − 1))
(1)

given α − 1 ≤ [(2σ 2
i )/3] log([1/(ατ(1 + δ2))]) with α =

([2 log(1/δ)]/ε)+ 1, and τ = (B/Di).
Proof: See Appendix B.

Theorem 1 indicates that the added noise scale is inver-
sion proportional to the local data size for guaranteeing the
(ε, δ)-DP of local data. The reason is that the increasing data
size reduces the sensitivity of the local model trained on the
adjacent data sets.

D. Convergence Analysis

In this section, we analyze the convergence of the estab-
lished DPFL framework under nonconvex objectives which
are common in neuron networks. Similar with [17] and [30],
we give the standard assumptions as follows.

Assumption 1 (Smoothness): f1, . . . , fI are all L-smooth: for
all w and w′, f (w′) ≤ f (w)+(w′ −w)T∇f (w)+(L/2)‖w′ −w‖.

Assumption 2 (Unbiased Gradients): Let bi
t,s be the batch

of data with batch size B sampled from Di uniformly at ran-
dom. The variance of stochastic gradients in each data owner
is bounded: E‖∇fi(wi

t,s; bi
t,s)− ∇fi(wi

t,s)‖ ≤ (Q2/B)
Assumption 3 (Bounded Gradients): The expected squared

norm of stochastic gradients is uniformly bounded, i.e.,
E‖∇fi(wi

t,s; bi
t,s)‖ ≤ G2

For the sth local iteration at round t, we use wt,s to denote
an auxiliary parameter vector that follows a centralized gradi-
ent descent based on wt,s =∑I

i=1pi(wi
t,s + ni

t,s), which is the
weighted average of local solution wi

t,s over all I data own-
ers with weight pi = (Di/D) and ni

t,s ∼ N (0, σ 2
i Id) is the

Gaussian noise. It is immediate that

wt,s = wt,s−1 − η
I∑

i=1

pig
i
t,s +

I∑

i=1

pin
i
t,s

= wt,s−1 − η
I∑

i=1

pi

(

gi
t,s −

ni
t,s

η

)

. (2)

Since each data owner in Algorithm 1 restarts its SGD with
the same initial point wt = wt = wi

t at the beginning of each
round, deviation between each local solution wi

t,s and wt,s are
related to s with 1 ≤ s ≤ |βi|E. The following useful lemma
gives the bound of the expected gap E[‖wt,s − wi

t,s‖2] after s
local iterations at round t.

Lemma 1: For the sth iteration at round t, Algorithm 1
ensures

E

[∥
∥wt,s − wi

t,s

∥
∥2
]
≤ H (3)

where H = sη2G2∑I
i=1p2

i + sd
∑I

i=1p2
i σ

2
i + sη2G2 + sdσ 2

i .

Proof: See Appendix C.
Lemma 1 indicates that the bound of the expected gap is

related to the local iteration index s and the expected noise
scale dσ 2

i .
Convergence Criteria: Since the objective function is non-

convex, like [17], [30], we use the expected gradient norm as
an indicator of convergence. After T − 1 rounds and S local
iterations at the Tth round, the algorithm reaches an expected
suboptimal solution if

1

K

T−1∑

t=1

S∑

s=1

E

[∥
∥∇f

(
wt,s−1

)∥
∥2
]
≤ υ (4)

where υ is arbitrarily small and K = (T−1)|β|E+S. This con-
dition ensures that the algorithm can converge to a stationary
point.

Theorem 2: If 0 ≤ η ≤ (1/L), after T − 1 rounds and S
iterations at the Tth round, we have

1

K

T−1∑

t=1

S∑

s=1

E

[∥
∥∇f

(
wt,s−1

)∥
∥2
]
≤ 2

ηK

(
f
(
w0,0

)− f ∗
)

+ L2
I∑

i=1

p2
i H + LηQ2

B

I∑

i=1

p2
i

+ Lηd
I∑

i=1

p2
i σ

2
i (5)

where f ∗ is the minimum value of f (w) and
K = (T − 1)|β|E + S.

Proof: See Appendix D.
Theorem 2 indicates that the DPFL framework satisfies the

convergence criteria and the noise magnitude will affect the
convergence.

IV. INCENTIVE MECHANISM FOR DPFL

In this section, we consider the DPFL-incentive scenario.
We give the models of the data owners’ contribution and three-
type costs, and provide the utility functions of the model owner
and the data owners, respectively.

A. DPFL-Incentive Scenario

As aforementioned, the DPFL framework provides the pri-
vacy protection of the data owners and reaches convergence
of Algorithm 1. We conduct experiments to measure the
trained model performance with the DPFL framework over
the MNIST data set and show the result in Fig. 1. We
observe that with the same ε, the test accuracy of the trained
model decreases with the growing noise scale under both
independent and identically distributed (iid) and non-iid set-
ting. Thus, we define a data owner’s contribution as the
expected trained model performance and fit the performance
curve as

A = −aσ 2
i + b

= −a
14αη2ET

BDi(ε − log(1/δ)/(α − 1))
+ b (6)
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Fig. 1. Test accuracy with respect to noise scale under different privacy
budget (under IID and non-IID setting). (a) MNIST IID. (b) MNIST NON-IID.

where a and b is system factors, and α = ([2 log(1/δ)]/ε)+ 1.
Under this setting, we consider a DPFL-incentive scenario
consisting of a model owner and I data owners. The model
owner publishes DPFL tasks specifying the uniform privacy
budget εmin ≤ ε ≤ εmax. When ε < εmin, the added noise
scale is too large so that the training cannot converge. When
ε > εmax, the added noise scale is too small to perturb the
model and thus cannot protect the data owner’s privacy. The
model owner also specifies required training data size Di and
corresponding reward Ri. Each data owner selects the data size
by considering its computation cost, communication cost, and
privacy cost. Then the data owners complete their tasks over
private data of chosen size Di and obtain reward Ri. In order
to design the incentive mechanism matching Ri and Di, we
model the three-type costs and utilities of the model owner
and data owners in next section.

B. Costs in DPFL

Privacy Cost: At each local iteration, each data owner adds
Gaussian noise to perturb their local computation results, i.e.,
model parameters. According to (1), the noise magnitude σi

depends on the DP budget ε ∈ (0,+∞) which affects the
level of privacy protection. With a smaller ε, the distribution
difference of the local computation results from between the
local data set Di and adjacent data set D

′
i becomes smaller,

and the level of privacy protection is higher. In the extreme
case where ε → 0, the attacker can not tell the difference of
the computation results, and the highest privacy protection is
achieved. Here, we define the privacy cost of a data owner
as his economical loss from the potential privacy exposure,
which is given as

li = ε

εmax
viDi (7)

where vi is the economical loss per unit data from privacy
leakage and εmax is the constraint for the perturbation. When
ε exceeds εmax, the injected noise is too little to perturb the
model result and is not able to protect the privacy of the data
owners anymore.

Computation Cost: After downloading the initialized or
aggregated global model from the model owner, each data
owner carries out the local training. When the data owner i
uses its local data of chosen size Di for training, the total work-
load for local training is given as Wi = NFDiE, where NF is
the number of floating point operations (FLOPs) needed for

processing each sample, and E is the number of local epochs
set in Algorithm 1. The CPU clock frequency of device i is
denoted as f c

i , and thus the computing capability of device is
fi = f c

i ni, where ni is the number of CPU FLOPs per cycle.
The computation time of the data owner i for local training at
each round is given as

tcp
i =

Wi

fi
= NFE

f c
i ni

Di. (8)

For a CMOS circuit [31], the power consumption of CPU
can be given by Pcp

i = ψi(f c
i )

3, where ψi is the coefficient
[in Watt/(Cycle/s)3] depending on the chip architecture. The
computation energy consumption of the data owner i at each
round can be given as

ecp
i = Pcp

i tcp
i =

NFEψif c
i

2

ni
Di. (9)

Communication Cost: At the end of each round, each data
owner uploads the noisy local model to the model owner
via wireless communication of frequency-division multiple
access (FDMA). The bandwidth allocated for the data owner
i is denoted as bi in an arbitrary round and assumed to be
fixed throughout the round. Let s be the model size (in bit).
The communication time that the data owner i spends is
tcm
i ∝ (s/bi) [32], [33]. Based on synchronous updates, a time

constraint Tmax of each round is set for all the data own-
ers. Here, we assume that after computation, the data owners
make full use of constraint time for transmission to save band-
width: tcm

i = Tmax − tcp
i . Thus, the communication energy

consumption of the data owner i at each round is

ecm
i = Pcm(Tmax − tcp

i

) = Pcm
(

Tmax − NFE

f c
i ni

Di

)

(10)

where Pcm is the transmission power which is considered to
be the same for all data owners [2].

C. Data Owner and Model Owner Modeling

The expected utility of data owner i is the difference
between its gained rewards Ri and its total costs of completing
federated learning tasks. The costs includes the privacy cost
spent for economic loss caused by potential privacy leakage,
and the cost spent for energy consumption of computation and
communication. If the data size is Di, the expected utility of
data owner i can be expressed as

ud
i (Di,Ri) = Ri − cT

(
ecp

i + ecm
i

)− li

= Ri − cT
NFEψif c

i
2

ni
Di

−
(

cTPcmTmax − cT
PcmNFE

f c
i ni

Di

)

− ε

εmax
viDi

= Ri − θiDi − (ζ − τiDi)− ρiDi (11)

where c is unit cost of energy, T is number of rounds,
θi = cT[(NFEψif c

i
2)/ni], τi = cT[(PcmNFE)/(f c

i ni)], ρi =
(εvi/εmax), and ζ = cTPcmTmax. θi refers to the computation
cost and ρi refers to the privacy cost. The communication cost
is ζ − τi and relies on τi since ζ is a constant. Thereby, here
τi refers to the communication cost.
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Based on (11), the data owners can be classified into differ-
ent types to characterize their heterogeneity. In particular, the
data owners can be categorized into a set � = {θx : 1 ≤ x ≤ X}
of X computation cost types, set T = {τy : 1 ≤ y ≤ Y} of
Y communication cost types, set P = {ρz : 1 ≤ z ≤ Z}
of Z privacy cost types. Therefore, there are total XYZ types
of data owners whose distribution is represented by a joint
probability mass function Q(θx, τy, ρz). The data owners’ types
are sorted in a nondecreasing orders as for each dimension:
0 < θ1 ≤ θ2 ≤ · · · ≤ θX , 0 < τ1 ≤ τ2 ≤ · · · ≤ τY , and
0 < ρ1 ≤ ρ2 ≤ · · · ≤ ρZ . The data owners are discriminated
by these three cost types. For notation simplicity, we represent
a data owner of computation cost type x, communication cost
type y, and privacy cost type z to be that of type-(x, y, z). We
then ignore the subscript i and use the combination of data
size and rewards {D,R} to write the utility of the type-(x, y, z)
data owner as

ud
x,y,z(D,R) = R− Cx,y,z(D)

= R− θxD+ τyD− ρzD− ζ (12)

where Cx,y,z is the total cost of the type-(x, y, z) data owner.
As discussed in Section IV-A, the trained model

performance with DPFL is a concave function with respect
to the added noise scale which is converse proportional to
the data size given the privacy budget. Without loss of gen-
erality, we consider the aggregate model performance to be
the average contribution of all the data owners, which is
expressed as

h(Di) = 1

I

I∑

i=1

(
−aσ 2

i + b
)

= 1

I

I∑

i=1

(

−ak

Di
+ b

)

(13)

where k = ([14αη2ET]/[B(ε − log(1/δ)/(α − 1))]).
Considering the contract item ωx,y,z = {Dx,y,z,Rx,y,z} for each
data owner type, the aggregate model performance can be
rewritten as

h
(
Dx,y,z

) =
X∑

x=1

Y∑

y=1

Z∑

z=1

Qx,y,z

(

− ak

Dx,y,z
+ b

)

(14)

where Qx,y,z is the joint probability mass function for the type
of each data owner, i.e., θx,τy, and ρz. The expected utility of
the model owner is expressed as

um = γ h
(
Dx,y,z

)−
X∑

x=1

Y∑

y=1

Z∑

z=1

IQx,y,zRx,y,z

=
X∑

x=1

Y∑

y=1

Z∑

z=1

IQx,y,z

(
γ

I

(

−ak

Di
+ b

)

− Rx,y,z

)

(15)

where γ > 0 denotes the conversion parameters from model
performance to profits.

V. MULTIDIMENSIONAL CONTRACT DESIGN

In this section, we first formulate the problem as a 3-D
contract. Then we transform the 3-D contract to the equal
1-D contract problem with constraints. Finally, we relax the
constraints for contract feasibility so as to solve for the optimal
contract.

A. Contract Conditions Analysis

We design a 3-D contract �(�, T ,P) = {ωx,y,z, 1 ≤ x ≤
X, 1 ≤ y ≤ Y, 1 ≤ z ≤ Z} for the model owner to attract the
participation of data owners in DPFL under the information
asymmetry condition, where the model owner doesn’t know
the three-type cost information of each data owner. The con-
tract is feasible if and only if each data owner chooses the
contract item corresponds to its type. This is ensured when
individual rationality (IR) and incentive compatibility (IC)
constraints are satisfied at the same time.

Definition 1 [Individual Rationality (IR)]: Each type-
(x, y, z) data owner’s utility is nonnegative when it selects the
contract item ωx,y,z corresponds to its type, i.e.,

ud
x,y,z

(
ωx,y,z

) ≥ 0, 1 ≤ x ≤ X, 1 ≤ y ≤ Y, 1 ≤ x ≤ Z.

(16)

Definition 2 [Incentive Compatibility (IC)]: Type-(x, y, z)
data owner gets the maximum utility if it selects the con-
tract item ωx,y,z correspond to its type rather than any other
contract items, i.e.,

ud
x,y,z

(
ωx,y,z

) ≥ ud
x,y,z

(
ωx′,y′,z′

)
, 1 ≤ x ≤ X

1 ≤ y ≤ Y, 1 ≤ x ≤ Z. (17)

Thus, the 3-D contract design problem is formulated as

max
ω

um

s.t. (16), (17). (18)

However, the multidimensional contract design problem has
XYZ IR constraints and XYZ(XYZ − 1) IC constraints which
are all nonconvex. It is difficult to directly handle the contract
design problem with multiple nonconvex constraints. To study
the contract feasibility, we first transform the multidimensional
contract into a single-dimensional contract formulation. Based
on (12), the total cost of a type-(x, y, z) data owner is
Cx,y,z(D) = θxD − τyD + ρzD + ζ . we derive the marginal
cost α of data size for a type-(x, y, z) data owner as

α
(
θx, τy, ρz

) = ∂Cx,y,z(D)

∂D
= θx − τy + ρz. (19)

Intuitively, α(θx, τy, ρz) > 0 shows the unwillingness of the
type-(x, y, z) data owner since the data owner with larger
marginal cost is always more unwilling to participate in
the DPFL. We sort the XYZ data owners according to their
marginal cost of data size in a nondecreasing order as

�1(D),�2(D), . . . , �j(D), . . . , �XYZ(D) (20)

where �j(D) represent certain type-(x, y, z) as type-�j data
owner. Given the sorting order, the data owner types are in an
ascending order according to the marginal cost of data size

α(�1,D) ≤ . . . α(�j,D
) ≤ · · · ≤ α(�XYZ,D). (21)
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To ease of notation, we use type-�j to represent the data owner
type and denote ωj = (Dj,Rj) as the contract item designed
for type-�j data owner. In addition, we use C(�j,Dj) to rep-
resent the new ordering of cost subsequently. Similarly, we
use α(�j,Dj) to represent the marginal cost of data size. We
then use the data owners’ marginal cost type to analyze the
necessary and sufficient conditions for a feasible contract that
satisfies the IR and IC conditions.

B. Feasibility of Contract

We first analyze the necessary conditions for a feasible
contract.

Lemma 2: For any feasible contract ω(�, T ,P), Dj < Dj′
holds if and only if Rj < Rj′ .

The proof can be referred to [15]. Lemma 2 indicates that
if the data owner chooses to use more data for training, the
feasible contract needs a higher reward, and vise versa.

Lemma 3 (Monotonicity): For any feasible contract
ω(�, T ,P), if α(�j,Dj) > α(�j′ ,Dj), it follows that
Dj ≤ Dj′ .

The proof can be referred to [15]. Lemma 3 shows that
the data owner with a higher type prefers to do training with
more data. According to Lemmas 1 and 2, we can achieve the
necessary conditions for a feasible contract as follows.

Theorem 3 (Necessary Conditions): A feasible contract
must satisfy:

{
D1 ≥ D2 ≥ · · · ≥ Dj ≥ · · · ≥ DXYZ

R1 ≥ R2 ≥ · · · ≥ Rj ≥ · · · ≥ RXYZ .
(22)

We then analyze the sufficient conditions for a feasible con-
tract. In order to achieve the solution of optimal contract by
reducing the number of constraints, we relax the IR and IC
constraints as follows.

According to the independence of �j on the contract item
{D,R}, i.e., �j(D,R) = �j(D′,R′),D �= D′,R �= R′, the
data owner type does not change with the data size and con-
tract rewards. In addition, based on (19), we can deduce
that the data owner type with minimum marginal cost is
ω1 = {θ1, τY , ρ1}, and the data owner type with maximum
marginal cost is ωXYZ = {θX, τ1, ρZ}. We can derive the
minimum-utility data owner type ωmax as

ωmax = arg min
ωj

ud(D,R, ωj
)
. (23)

Based on (12), the utility decreases in θx, increase in τy,
decreases in ρz. We can deduce that the minimum utility is
{θX, τ1, ρZ} and ωmax = ωXYZ which is the data owner type
that incurs the highest marginal cost of data size.

Lemma 4 (Reduce IR Constraints): If the IR constraint of
the minimum utility data owner type ωXYZ is satisfied, the IR
constraints of other data owner types will also satisfied.

Proof: According to the IC and IR constraints, we have

ud
j ωj ≥ ud

j (ωXYZ) ≥ ud
XYZ(ωXYZ) ≥ 0. (24)

As long as the IR constraint of the type-ωXYZ data owner is
satisfied, the IR constraints of the other data owner type will
also hold. The proof is now completed.

Lemma 4 enables to cut the XYZ IR constraints to only one
IR constraint, i.e., ud

XYZ(ωXYZ) ≥ 0.

Definition 3 [Pairwise IC (PIC)]: If and only if
{

uj
(
ωj
) ≥ uj

(
ωj′
)

uj′
(
ωj′
) ≥ uj′

(
ωj
) (25)

is satisfied, the contract item ωj and ωj′ are pairwise incentive

compatible and denoted as ωj
PIC⇐⇒ ωj′ .

The PIC consists of all IC conditions in the two-data owner
case. In other words, the XYZ(XYZ − 1) IC conditions are
equivalent to the XYZ(XYZ − 1)/2 PIC conditions for all the
data owner pairs.

Lemma 5 (Reduce IC Constraints): Under the feasible con-
tract, if ωj−1

PIC⇐⇒ ωj and ωj
PIC⇐⇒ ωj+1, then ωj−1

PIC⇐⇒
ωj+1.

The proof can be referred to [15]. Lemma 5 makes the
contract problem more tractable. It shows that we can cut a
total of XYZ(XYZ− 1)/2 PIC conditions to a total of XYZ− 1
PIC conditions for the neighbor data owner type pairs. Now,
we can reduce IR and IC constraints and derive a tractable set
of sufficient conditions for the feasible contract as follows.

Theorem 4 (Sufficient Conditions): A feasible contract must
satisfy:

1) RXYZ − C(�XYZ,DXYZ) ≥ 0;
2) Rj+1 − C(�j+1,Dj+1) + C(�j+1,Dj) ≥ Rj ≥ Rj+1 −

C(�j,Dj+1)+ C(�j,Dj).

C. Optimal Contract

According to the conditions for the feasible contract, we
first obtain the optimal reward given a feasible set of data size
as follows.

Theorem 5 (Optimal Reward): For a feasible set of data size
D satisfying D1 ≥ D2 ≥ · · · ≥ Dj ≥ · · · ≥ DXYZ , the optimal
reward is obtained by

R∗j =
{

C(�XYZ,DXYZ), j = XYZ
R∗j+1 − C

(
�j,Dj+1

)+ C
(
�j,Dj

)
, otherwise. (26)

We rewrite the optimal rewards in (26) as

R∗j = R∗XYZ +
XYZ∑

m=j

�m (27)

where �XYZ = 0 and �m = C(�m,Dm)− C(�m,Dm+1),m =
1, 2, . . . ,XYZ−1. To analyze the optimal data size D∗ for the
data owners, we substitute the optimal rewards R∗ into the util-
ity function of the model owner and rewrite the optimization
problem (18) as

max
D

XYZ∑

j=1

Gj
(
Dj
)

s.t. D1 ≥ D2 ≥ · · · ≥ Dj ≥ · · · ≥ DXYZ (28)

where

Gj = I

⎛

⎝Q
(
�j
)
γ h
(
Dj
)+ C

(
�j−1,Dj

)
j−1∑

m=1

Q(�m)

− C
(
�j,Dj

)
j∑

m=1

Q(�m)

⎞

⎠. (29)
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Since the objective functions Gj(Dj) and Gi(Di) are indepen-
dent of each other, i, j ∈ {1, . . . ,XYZ}, i �= j, Gj(Dj) is only
related to Dj. Thus, Dj can be derived by optimizing only
Gj(Dj), which is given as

D∗j = arg max
Dj

Q
(
�j
)
γ h
(
Dj
)+ C

(
�j−1,Dj

)
j−1∑

m=1

Q(�m)

− C
(
�j,Dj

)
j∑

m=1

Q(�m). (30)

In addition, we observe that Gj(Dj) merely consists of a
concave function and a linear function such that it is a con-
cave function. According to Fermat’s Theorem [34], we can
solve. (∂Gj/∂Dj)|Dj=D∗j = 0 to derive the D∗i . If the derived
solutions satisfy the monotonicity conditions, they are the
optimal contract formulations. Otherwise, we use the iterative
adjust algorithm [15] to obtain the solutions that satisfy the
monotonicity constraint.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our proposed
multidimensional contract-based incentive mechanism under
the DPFL framework.

A. DPFL Performance

Experimental Setup: We conduct experiments on the stan-
dard MNIST data set for handwritten digit recognition includ-
ing 60 000 samples for training and 10 000 samples for testing.
We adopt a LeNet with two convolution layers and two fully
connection layers for the multiclass classification task, namely,
recognizing digit 0 to 9. Each convolution layer has 32 chan-
nels and kernel size is 3. We consider both iid and non-iid
settings. For the iid setting, we uniformly split the training
samples to 100 data owners. For the non-iid setting, we sort
the data by digit label and distribute the data to 100 data own-
ers by using the fashion in [3]. According to [3], we set batch
size B = 10, number of local epochs E = 5, and number of
communication rounds T = 30 for iid setting and T = 50 for
non-iid setting. We adopt SGD for the optimizer and set the
learning rate η = 0.01.

Tradeoff Between Accuracy and Privacy: Fig. 1 shows the
test accuracy with respect to noise σ under different privacy
budgets. When the privacy budget ε is fixed, the test accuracy
decreases with the increasing noise σ . This is because that
the model injected by larger noise has lower performance. We
further fit the performance curve A related to noise scale σ
and use it to model the contribution of data owners for the
incentive mechanism. When the model parameters are injected
by the same noise scale, the test accuracy is higher with a
lower ε. This is because that under the same noise scale, the
data owners choose a larger data size to reach a lower ε. With
the same privacy budget, the model performance under the
non-iid setting decreases more rapidly than that under the iid
setting. The reason is that the non-iid data increases the diffi-
culty of training. Fig. 2 shows the test accuracy with respect to

Fig. 2. Test accuracy with respect to data size under different privacy budget
(under IID and non-IID setting). (a) MNIST IID. (b) MNIST NON-IID.

Fig. 3. Test accuracy with respect to communication rounds for the
MNIST data set (under IID and non-IID setting). (a) MNIST IID. (b) MNIST
NON-IID.

Fig. 4. Training Loss with respect to communication rounds for the
MNIST data set (under IID and non-IID setting). (a) MNIST IID. (b) MNIST
NON-IID.

total data size D. When ε is fixed, the test accuracy increases
with increasing data size D. This is because that the model
trained on a larger data size has better performance. When
we use the same data size to train the model, the test accu-
racy is higher with a higher ε. This is because that with the
same data size, the data owners choose to inject less noise
to reach a higher ε. The test accuracy of the trained model
under the iid setting outperforms that of the non-iid setting.
The reason is that it is more difficult for training the model
over non-iid data.

Convergence Properties: We set the total data size
D= 60 000 and the number of communication rounds T = 50
to observe the algorithmic convergence properties of the
DPFL framework. Fig. 3 and 4 show the test accuracy
and training loss with respect to communication rounds
under different privacy budget. The traditional federated
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Fig. 5. System performance with respect to privacy budget under different incentive mechanisms. (a) Utility of model owner. (b) Total utilities of data
owners. (c) Social welfare.

TABLE I
PARAMETER SETTING IN THE SIMULATION

learning algorithm FedAvg [3] is considered as a baseline
performance without adding noise. As the privacy budget
ε decreases, the training loss converges to a higher bound
and the test accuracy decreases. This is because that with
fixed data size, a lower data budget ε brings to a larger
noise σ which implies larger convergence error. This is
consistent with the convergence analysis in Section III-D.
Comparing with the training under the iid setting, the train-
ing under the non-iid setting has a higher bound of training
loss and a lower test accuracy. The reason is that train-
ing over the non-iid setting brings a larger convergence
error.

B. Contract Performance

Simulation Setup: We consider that 100 model owners
use the LeNet on MNIST data set under iid setting and
the compuation workload is NF = 10MFLOPs. The CPU
clock frequencies of devices f c

i are uniformly chosen from
{1100, 1150, 1200, 1250} MHz. The Coefficient of the CMOS
circuit ψi is uniformly chosen from {1, 1.5, 2, 2.5} × 10−28.
The economical loss of unit data vi is uniformly chosen from
{0.01, 0.012, 0.014, 0.016}. The profit coefficient is γ = 500
and the unit cost of energy is c = 0.5. The other parameters
are set based on the Table I.

Performance Comparison: We compare our proposed
contract-based incentive mechanism under asymmetric
information scenario (CA) with the other three incentive
mechanisms: contract-based incentive mechanism under
complete information scenario (CC), contract-based incen-
tive mechanism for social maximization (CS) [15], and
Stackelberg game-based incentive mechanism (SG) [35]. CC
considers the scenario where the model owner knows the
cost types of each data owner. CS considers the information
asymmetry but the model owner aims to maximize the social

welfare which is expressed as

us = um +
XYZ∑

i=1

ud
i

=
XYZ∑

i=1

IQx,y,z

(
γ

I

(

−ak

Di
+ b

)

− Cx,y,z

)

. (31)

SG considers the data owners share a total reward R from
the model owner based on the proportion of data size and the
objective of each data owner is to maximize its own utility
which is expressed as

ud
i =

Di

D
R− θiDi − (ζ − τiDi)− ρiDi. (32)

We consider 8 (2 × 2 × 2) data owner types. Fig. 5 shows
the system performance under different incentive mechanisms.
With the CC mechanism, the model owner achieves the high-
est utility but the utilities of data owners are zero. It is because
that the model owner has full knowledge of data owners’ types
and thus designs the contracts for maximizing its own utility,
leading minimum utilities of data owners. With the CS mecha-
nism, the data owners achieve higher utilities while the model
owners obtain lower utilities. The reason is that the CS mech-
anism aims at maximizing the social welfare and thus reaches
the balance between the data owner side and the model owner
side. We find that the CS mechanism attains the highest social
welfare as well as the CC mechanism, but the CS mechanism
is under information asymmetry condition. With the SG mech-
anism, the data owners have the highest utilities but the model
owner has the lowest utility. The reason is that the objective
of the data owners with SG mechanism is to maximize their
own utilities and thus reduce the utility of the model owner.
Compared with the three mechanisms, our proposed CA mech-
anism allows the model owner to obtain near-optimal utility
under the information asymmetry condition.

Impact of Privacy Budget ε: Fig. 5 shows the system
performance with respect to privacy budget ε. With higher
ε, the utility of model owner and the social welfare increase
but the utilities of data owners decreases. It is because that
setting a higher ε will allow the data owners to make higher
contribution for the model performance and thus improve the
profit of the model owner. But a higher ε also brings higher
privacy cost to the data owners.

Impact of Multidimension Types: Fig. 6 shows the system
performance with respect to number of data owners under
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Fig. 6. System performance with respect to number of data owners under different number of data owner types. (a) Utility of model owner. (b) Total utilities
of data owners. (c) Social welfare.

Fig. 7. Properties of contract-based incentive mechanism. (a) Data size monotonicity. (b) Reward monotonicity. (c) Utility of data owner with different
contracts.

different number of data owner types. When the number of
data owners increases, both the model owner and the data
owners obtain higher utilities. It is because that the grow-
ing number of data owners can contribute more data for
training the model and gain more rewards. Thus, the social
welfare is also improved. When the number of data owner
types increases, the utility of model owner decreases but the
utilities of data owners increase. The reason is that when
the number of data owner types increases, it becomes more
difficult for the model owner to mine the information of
the data owners’ type and design the corresponding contract.
Therefore, the data owners can extract more reward from the
model owner.

Contract Properties: Fig. 7 shows the properties of the
designed optimal contracts. We consider 8 (2 × 2 × 2) data
owner types. Fig. 7(a) and (b) shows that both the data size
and reward monotonically decrease with the increase of the
marginal cost of data owners. This satisfies the feasibility of
contract structure given in Theorem 3. Moreover, type-7 and
type-8 have the same data size and reward. It is the result of
adjusting the solutions to satisfy the monotonicity constraint.
Fig. 7(c) shows the utility of different type of data owner
selecting different types of designed contracts. We observe that
the data owner achieves the highest utility only when it selects
the contracts of its own type. This satisfies the IC constraints.
When they select the contract of their own types, their utilities
are nonnegative. This satisfies the IR constrains. In particular,
the utility of type-8 is zero, as verified in Lemma 5.

VII. CONCLUSION

In this article, we proposed a practical incentive mechanism
for incentivizing the data owners to join federated learning in

the IoT area by jointly considering their task expenditure and
privacy risk. To control the risk of privacy leakage in the fed-
erated learning process, we built up a DPFL framework and
provided corresponding theoretical analysis. Under the DPFL
framework, we modeled the data owners’ contribution and
three-type costs, which are related to local training data size
and privacy budget. Based on the contribution and cost mod-
els, we designed a 3-D contract-based incentive mechanism to
find the optimal reward and local training data size for dif-
ferent types of data owners under the information asymmetry.
We also conducted simulations to validate the effectiveness of
the proposed incentive mechanism.

APPENDIX A
ADDITIONAL NOTATION

Definition 4 [(ε, δ)-DP]: A randomized machanism
f : X �→ R with domain D and range R offers (ε, δ)-
differential privacy if for any two adjacent data sets X,X′ ∈ X
that differ in at least one sample and any outputs S ⊂ R. With
a bound δ, it satisfies Pr [f (X) ∈ S] ≤ eε Pr [f (X′) ∈ S]+ δ.

Definition 5 [(α, ρ)-RDP]: A randomized mechanism
f : X �→ R offers (α, ρ)-Renyi different privacy, if for any
adjacent X,X′ ∈ X it holds Dα(f (X)‖f (X′)) ≤ ρ.

RDP is a natural relaxation of DP that is well suited for
expressing guarantees of privacy-preserving algorithms. It has
the following properties [36].

Lemma 6: Gaussian mechanism M = f (D) + N (0, σ 2Id)

applied on a subset of samples that are drawn
uniformly without replacement with probability τ

satisfies (α, [(3.5τ 2α)/σ 2])-RDP given α − 1 ≤
[(2σ 2)/3] log(1/[ατ(1 + σ 2)]), where the sensitivity of
f is 1.
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Lemma 7: If a randomized mechanism M satisfies (α, ρ)-
RDP, M satisfies (ρ + ([ log(1/δ)]/[α − 1]), δ)-DP for all
δ ∈ (0, 1).

APPENDIX B
PROOF OF THEOREM 1

We use RDP to tightly account the privacy loss of the
data owner and then convert it to a DP guarantee. For local
iteration s of round t, the data owner i learns a batch of
data with batch size B to update the local model: wi

t,s ←
wi

t,s−1−(η/B)∇�(wi
t,s−1; bi,s). Given any two neighboring data

sets X and X′ of size B, the sensitivity of the local model at
local iteration s of round t is

� (wi
t,s

) = max
X,X′
‖wi

t,s − wi
t,s′ ‖2

= max
X,X′

η

B

∥
∥�
(
wi

t,s−1;X
)− �(wi

t,s−1;X′
)∥
∥

2
≤ 2ηL

B
.

The inequality is due to the L-Lipschitz continuous of the loss
function �(·). The sampling rate is τ = (B/Di). According to
Lemma 6, if we add Gaussian noise drawn from N (0, σ 2Id),
each iteration then preserves (α, ε(α)′)-RDP with ε(α)′ =
[(14αη2L2)/(D2

i σ
2
i )]. After T rounds with |βi|E local itera-

tions at each round, it provides (α, [(14η2L2ETα)/(BDiσ
2
i )])-

RDP. By Lemma 7, Algorithm 1 provides (ε, δ)-DP with
ε = [(14η2L2ETα)/(BDiσ

2
i )]+ ([ log(1/δ)]/[α − 1]). We set

L = 1 [17] and solve σi from ε and achieve (1).

APPENDIX C
PROOF OF LEMMA 1

At round t ≥ 1, each data owner calculates the update for
sth iteration as wi

t,s = wt−1−η∑s
h=1(g

i
t,s− [(ni

t,s)/η]). By (2),
we have wt,s = wt−1 − η∑s

h=1
∑I

i=1pi(gi
t,s − [ni

t,s/η]). Thus,
we have

E

[∥
∥wt,s − wi

t,s

∥
∥2
]

= E

⎡

⎣

∥
∥
∥
∥
∥
η

s∑

h=1

I∑

i=1

pi

(

gi
t,s −

ni
t,s

η

)

− η
s∑

h=1

(

gi
t,s −

ni
t,s

η

)∥
∥
∥
∥
∥

2
⎤

⎦

= η2
s∑

h=1

I∑

i=1

p2
i E

[∥
∥gi

t,s
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where (a) follows Assumption 3 and the expected noise scale
E[‖nt,s‖2] = dσ 2

i with noise dimension d.

APPENDIX D
PROOF OF THEOREM 2

Based on the Assumption 1, we have
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Note that
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(35)

where (a) follows from (2); (b) follows because each gi
t,s −

∇fi(wi
t,s−1) has 0 mean and is independent across data owners,

and the expected noise scale. We further note that
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where (a) follows from (2); (b) refers to [30]; (c) follows from
the basic identity 〈x, y〉 = (1/2)(‖x‖2+‖y‖2+‖x−y‖2), where
x, y are any two vectors with same length. We note that
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where (a) follows from Assumption 1; (b) follows from
Lemma 1. We substitute (35) and (36) into (34) and get
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We divide both sides by (η/2) and rearrange terms to have
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We set K = (T − 1)|β|E+ S. Sum over K local iterations and
divide both side by K and achieve
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