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Abstract—Machine learning has played an increasing impor-
tant role in big data systems due to its capability of efficiently
discovering valuable knowledge and hidden information. Often
times big data such as healthcare systems or financial systems
may involve with multiple organizations who may have different
privacy policy, and may not explicitly share their data publicly
while joint data processing may be a must. Thus, how to share big
data among distributed data processing entities while mitigating
privacy concerns becomes a challenging problem. Traditional
methods rely on cryptographic tools and/or randomization to
preserve privacy. Unfortunately, this alone may be inadequate for
the emerging big data systems because they are mainly designed
for traditional small-scale data sets. In this paper, we propose a
novel framework to achieve privacy-preserving machine learning
where the training data are distributed and each shared data
portion is of large volume. Specifically, we utilize the data locality
property of Apache Hadoop architecture and only a limited
number of cryptographic operations at the Reduce() procedures to
achieve privacy-preservation. We show that the proposed scheme
is secure in the semi-honest model and use extensive simulations
to demonstrate its scalability and correctness.

I. INTRODUCTION

Machine learning has been widely used for scientific re-

search and business purposes recently to extract useful informa-

tion. Recent decades have witnessed accelerating development

of new machine learning methods such as clustering, classifi-

cation, association rule mining and sequence detection, which

have been constantly improved to discover useful knowledge.

However, all existing algorithms are originally designed for

centralized algorithms dealing with small-scale data sets. In

today’s big data scenarios, things could be very different. A

common scenario nowadays is that a group of organizations

intend to conduct data mining over their joint data. It could be

several banks wishing to conduct credit risk analysis to identify

non-profitable customers based on past transaction records, or
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several medical institutions trying to discover certain correla-

tions between symptoms and diagnoses from patients’ records.

The former case is known as data mining over vertically

partitioned data [26], where the entire table is partitioned by

columns and each learner has the same number of records, but

the records are with different features. The latter is known as

data mining over horizontally partitioned data [17], where the

entire table is partitioned by rows and each learner has a certain

number of rows with the same number of features. In either

case, the handled data is sensitive and usually very large in

its volume. In what follows, we will use data mining as the

typical machine learning problems to articulate our proposed

algorithms whenever needed.

The problem of privacy-preserving data mining has been

studied for decades. Numerous privacy-preserving data mining

protocols have been proposed. Generally speaking, privacy-

preserving data mining protocols could be classified into two

categories:

• Perturbation and randomization-based approaches
sanitize the samples prior to their release in order to

mitigate the threat of inadvertent disclosure or theft

[13][7]. Approaches in this category may only provide

a limited privacy preservation and usually make a

trade-off between utility and privacy.

• Secure multiparty computation (SMC)-based ap-
proaches employ cryptographic tools and focus on

protocol development to protect privacy among the

involved learners [9][19]. Approaches in this category

may provide certain level of provable security under

the standard semi-honest model, but may bring in a

huge extra computation overhead[11]. This is espe-

cially true in the data mining missions that handle

enormous amount of data.

Existing approaches are designed mostly for a centralized

solver dealing with small-scale data sets and they may be

inadequate for the emerging big data scenarios. Consider the

case where a group of organizations are trying to do data
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mining over their joint data and each share of the data is very

large in its volume. A desired scheme for this task should have

two properties. First, it should be able to fit into the existing

Data Parallel Systems (e.g. Apache Hadoop and/or Twister)

to handle the big data. Second, cryptographic operations are

minimized to guarantee training efficiency.

Data Parallel Systems are crucial to the success of big data.

In Data Parallel Systems such as Google File Sysatem(GFS)

and MapReduce, clusters are built with commodity hardware

and each node takes the roles of both computation and storage,

which is known as data locality. Data locality is a significant

advantage of data parallel systems over traditional High Perfor-

mance Computing(HPC) systems because moving computation

result is much cheaper than moving data. We observe that

another potential big advantage of data locality is its ability to

protect the local private data. Imagine that if machine learning

could be done with distributed local learners independently and

somehow a consensus learning result could be deduced from

the local learning results, there is no privacy concerns about

the local training data because they are controlled by the local

learners and never leave the local domain. For example, in

MapReduce framework, local training could be regarded as

the Map() procedures and the consensus forming process be

the Reduce() procedures. With data locality, security bottleneck

of the whole system lies in Reduce() because Map() operates

independently with local data. Notice that Reduce() is usually

much simpler than Map(), and then a few simple and efficient

cryptographic operations are sufficient. In the rest of this paper

we use Map() and Mapper interchangeably to denote the local

training procedure; Reduce() and Reducer interchangeably to

denote the consensus procedure.

In this paper, we propose a framework based on MapReduce

and data locality is also used to conceal the local training

data. Our system structure is illustrated in Fig. 1. Each learner

is treated as a data node of HDFS (Hadoop Distributed File

System). Each data node has a Mapper who will perform

machine learning over the local data to get a local training

result. The local training result is then sent to Reducer. A

secure protocol is implemented on the Reducer such that the

local training results could be summarized securely. Notice that

it may require a few back and forth negotiation processes for

the local Mappers to reach a consensus. Hence, there should

exist a feedback channel from the Reducer to Mappers to

feed back the current negotiated results. We focus on support

vector machine and propose two schemes for horizontally and

vertically training sets.

The rest of this paper is organized as follows: In Section

II we discuss the existing approaches and compare them with

our approach. In Section III, we briefly discuss support vector

machines (SVMs), kernel-based nonlinear SVM, and alternat-

ing direction method of multipliers (ADMM). In Section IV,

we present the designed schemes for horizontally partitioned

case and vertically partitioned case, respectively. In Section V,

security analysis is conducted. In Section VI, the performance

of our scheme is tested against three popular data sets and

finally, in Section VII, we conclude this paper.

II. RELATED WORKS

Privacy-preserving data mining falls into two major cat-

egories: randomization-based approaches and SMC-based ap-

proaches. Randomization-based approaches protect the private

data by adding noise to the original data. In [21] and [22], both

the horizontally and vertically partitioned data scenarios are

studied for the SVMs. In their schemes, a randomly generated

matrix known as “random kernel” is directly multiplied to the

original kernel matrix. It is argued that random kernels will hide

the private data while guaranteeing accurate learning results.

This method works because some properties are preserved by

matrix multiplication which is also known as the restricted

isometry property (RIP) in the compressive sensing research.

The drawbacks of the random kernel approaches is that the

random kernels should be shared among the learners as a

common key and it only works under the client and server

scenario. In [7], Chaudhuri and Monteleoni show that one can

either add noise to the final data mining results or directly

work on a perturbed objective function to guarantee that

the original training data is ε-differentially private. The ε-
differential privacy model limits the amount of information

an adversary can gain about a particular private value by

observing a function learned from a database containing that

value, even if she knows every other value in the database.

However, this model has a restricted requirement: the objective

function and loss function must be differentiable everywhere

with continuous derivatives and convex. In [1], Agrawal and

Srikant show that adding random noise to the training data

still preserve some statistical properties. As a result, a Naive

Bayes classifier could still be obtained from the sanitized data.

In [14], Fong and Weber-Jahnke propose a method to generate

some fake training data set from the real ones, while useful

knowledge could still be discovered from the fake training sets.

It has been claimed that the privacy and utility are achieved at

the same time. However, the generation of the fake training

sets induces huge extra cost.

The SMC-based approaches usually rely on some specific

design of a certain learning method. For example, in [30], Yuan

and Yu use homomorphic encryption to calculate the delta

function in the back-propagation training; in [28] and [31],

Jiang and Zhan propose to use secure dot product protocols

and secure sum protocols to get the kernel matrix in SVM

learning; in [20], Lindell and Pinkas propose a secure protocol

to compute the result of (v1+v2) log(v1+v2) without revealing
v1 and v2 to each other, which is the key step for the ID3

319



algorithm in building a decision tree; in [18] Kantarcioglu and

Clifton use commutative encryption and secure sum protocols

to find the association rules over the horizontally partitioned

data and in [27], Vaidya and Clifton apply secure dot protocols

to find association rules over the vertically partitioned data.

Generally speaking, SMC based approachs use secure protocols

on a few key steps of a particular machine learning algorithm

and send the SMC results to a centralized node to perform

learning.

III. PRELIMINARIES

A. Linear Support Vector Machines(SVMs)

SVMs were first introduced in [10]. Basically, SVMs are

working towards an optimal separating hyper-plane between

two classes of data. The two classes are determined as opti-

mally separated when the margin between them is maximized,

which is defined as the distance from the closest point of

one class to the boundary of the other class. The optimization

problem for SVM could be formulated as

min
w,b

1

2
wTw + C‖ξ‖11

s.t. yi(w
Txi + b) ≥ 1− ξi

ξi ≥ 0, ∀i
(1)

where each xi is one training sample of size k × 1 and yi
is the corresponding class label. ξ is an N × 1 slack variable

vector whose entries are all non-negative. The slack variable

ξ could be used to reject outliers. When the two classes are

not linearly separable, we can use the parameter C to make

a tradeoff between maximum margin and the tolerance of

outliers. Usually, a support vector machine problem (1) is

approached through KKT conditions and its Wolfe-dual, which

is in the following form:

min
λ

1

2
λTHλ− 1Tλ

s.t. 0 ≤ λ ≤ C1,
λT y = 0.

(2)

In problem (2), 0 is a vector of all zeros and 1 is a vector
of all ones and y denotes the vector of labels. The matrix H
is constructed as Hij = yix

T
i xjyj . The optimal values of λ

indicate the support vector. If 0 < λi ≤ C, xi is found as a

support vector. Instead of solving problem (2) directly through

a quadratic programming solver, there exist a number of faster

algorithms such as Osuna[23] and SMO(sequential minimal

optimization)[24] used in LIBSVM[6].

After problem (2) is solved, w is calculated as w =∑
i∈SV λixiyi, where SV denotes the set of support vectors.

With support vectors, b could be found from yi(wixi + b) =
1, ∀i ∈ SV . Notice that we may obtain multiple values for b
due to multiple support vectors. In [5], Burges suggest to use

the average value of b resulting from all the support vectors.

However, in some SVM implementation such as Matlab and

LIBSVM[6], they only use one support vector to find b which
is the one corresponding to the maximum λ. To the best of our
knowledge, these two methods have similar performance.

B. Nonlinear SVM with Kernel Tricks

The general task for machine learning is to find and

study the relationship between data points. Kernel methods

provide a valuable way to access the similarity in a high-

dimensional implicit feature space without ever computing the

coordinates in that feature space, which will greatly reduce the

computation. Specifically, for xi, xj ∈ R
k, φ(·) : Rk → R

p,

denote the mapping of x from low-dimensional Rk to a high-

dimensional Reproducing Kernel Hilbert Space (RKHS) Rp.

The explicit form of a kernel function K : Rk × R
k → R is

defined as:

K(xi, xj) = 〈φ(xi), φ(xj)〉 (3)

Three most popular kernels, i.e., polynomial, radial basis

function, and sigmoid kernels, are listed as follows:

1) Polynomial Kernel: K(xi, xj) = (a〈xi, xj〉+ b)d

2) Radial Basis Function Kernel: K(xi, xj) = e‖xi−xj‖
2

3) Sigmoid Kernel: K(xi, xj) = tanh(〈xi, xj〉+ c)

Nonlinear SVM utilizes kernel tricks and writes its dis-

criminant function as f(x) = wTφ(x) + bm. However, w is in

the unknown high-dimensional space and is hard to find. For

example, RBF kernel will lead to an infinite-dimensional w.
In that sense, the primary problem of SVM is not available.

However, if we follow the standard Wolfe-dual transformation

to find the dual problem, we could play with kernel tricks

to get rid of the high-dimensional vectors. As shown in [5],

nonlinear SVMs could still be solved from problem (2). The

only difference is that H is obtained by Hij = yiK(xi, xj)yj .
Then, with the dual variables λ, the discriminant function is

written as f(x) =
∑
i∈SV λiyiK(xi, x).

C. ADMM

The alternating direction method of multipliers (ADMM)

is a variant of the augmented Lagrangian scheme that uses

partial updates for the dual variables (dual ascent). It is

intended to blend the decomposability of dual ascent with the

superior convergence properties of the augmented Lagrangian

scheme[4]. Generally, ADMM is designed for a problem in the

following form:
min
x,z

f(x) + g(z)

s.t. Ax+Bz = c.
(4)

ADMM approaches to the optimal solution of x and z through

the following iterations:

xt+1 := argmin f(x) +
ρ

2
‖Ax+Bzt − c+ ut‖22

zt+1 := argmin g(z) +
ρ

2
‖Axt+1 +Bz − c+ ut‖22

ut+1 := ut +Axt+1 +Bzt+1 − c

(5)

In this problem, the variable u could be understood as the dual

variable, according to the dual ascent algorithm. On each iter-

ation, only partial updates are applied to u until convergence,

i.e., u = 0. It is this partial update of the dual variable that

enables us to calculate x and z independently, even though

they are correlated with each other by an equality constraint

in problem (4). With this nice property, we may be able to
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Fig. 2: The training set is horizontally partitioned

decompose problem (4) into two subproblems and distribute the

computation task. Meanwhile, the term ρ
2‖Ax+Bzt−c+ut‖22

guarantees the convergence property.

IV. THE PROPOSED APPROACH

In this section, we first present our scheme with linear

SVMs of horizontally partitioned training data. Then, a more

sophisticated version is proposed for nonlinear SVMs. More

over, we will also show how to modify our scheme to work

under a vertically partitioned scenario. In order to take ad-

vantage of data locality to protect private training data, the

proposed scheme should be managed to 1) decompose the

joint learning task into independent small subtasks; 2) assign

subtasks to Mappers such that Mappers could perform local

training without knowing others’ private data.

A. Linear SVM with Horizontally partitioned data

A horizontally partitioned scenario could be visualized as

Fig. 2. The joint training set X includes totally N records

shown as N rows, and each record is a training sample with

k attributes. N records are distributedly located at to M
learners. Let Xm denote the training set at learner m of size

Nm × k. Ym is a square matrix whose diagonal elements are

the corresponding labels. wm and bm are local training results.

Consider the following problem:

min
{wm},{bm}

M∑

m

1

2M
wTmwm+C

M∑

m

‖ξm‖11
s.t. Ym(Xmwm + 1bm) ≥ 1− ξm,

ξm ≥ 0,
wm = z,

bm = s ∀m = 1, 2, ...M.

(6)

Lemma 4.1: The optimal solution of problem (1) is identi-

cal to the solution of problem (6), i.e., w = wm, b = bm, ∀m =
1, 2...M .

Proof: Assume the constraints of wm = z and bm =
s, ∀m = 1, 2, ...M are all strictly enforced. Then, it is safe

to substitute {wm} with z, {bm} with s, and omit the last

two equality constraints. Then, we will obtain an optimization

problem with the same objective function and constraints as

problem (1). Hence, the solutions of the two problems are

identical.

The next step is to decompose problem (6) into subprob-

lems that fit MapReduce framework. Firstly, we can see that

the objective function is decomposable because if we take

partial derivative of the objective function, wn, ∀n 
= m will

vanish. Secondly, the constraints could be divided into groups

such that each group only related to a single wm. With these

two observations, the subtasks are independent if the subtask

assigned to Mapper m is defined as:

min
wm,bm

1

2M
wTmwm+C‖ξm‖11

s.t. Ym(Xmwm + 1bm) ≥ 1− ξm,

ξm ≥ 0,
wm = z,

bm = s.

(7)

However, problem (7) is still hard to solve. The equality

constraints of wm = z and bm = s are difficult to enforce

for all the M learners at the same time because we do not

know the values of z and s. Actually, z and s are the optimal

solution to the centralized problem (1). Instead of requiring

each subtask to enforce the equality constraints immediately,

we could introduce a regularization term of
∑M
m

ρ
2‖wm − z‖22

to the objective function. By doing this, {wm} are optimizing

the inverse margin while approaching to z. After this, z could

be updated with the calculated {wm}. This cyclic optimization
is iterating until convergence. Similar idea will be applied to

{bm}. As a summary, with the regularization terms, Lagrangian
function of problem (6) could be written in the following form

as the augmented Lagrangian:

L =
M∑

m

{ 1

2M
wTmwm − λm[Ym(Xmwm + 1bm)− 1+ ξm]

− μmξm + C‖ξm‖11 +
ρ

2
‖wm − z + γm‖2

+
ρ

2
‖bm − s+ βm‖2}

(8)

In the augmented Lagrangian (8), γm and βm are introduced

to get rid of the dual variables for wm = z and bm = s [4].

With function (8), alternative optimizations of wm, z, bm, and
s could be carried out as:

{wt+1m } = arg min
{wm}

L({wm}, zt, {btm}, st) (9a)

zt+1 = argmin
z

L({wt+1m }, z, {btm}, st) (9b)

{bt+1m } = arg min
{bm}

L({wt+1m }, zt+1, {bm}, st+1) (9c)

st+1 = argmin
s

L({wt+1m }, zt+1, {bt+1m }, s) (9d)

Notice that in problem (9a), wm is obtained through its dual

problem by first solving λm as follows:

Ld = − M

2(1 + ρM)
λmYmXmXT

mYmλTm

+ [1− Mρ

1 + ρM
(zt − γtm)YmXm]

Tλm

(10)
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Let

A =
M

1 + ρM
YmXmXT

mYm

Bt = −1+ Mρ

1 + ρM
(zt − γtm)YmXm

(11)

Then, the duel problem could be written in the following nice

and neat form:

λm :=arg min
0≤λm≤C

1

2
λmAλTm +BTλm

s.t. 1Ymλm = ρ(btm − st + βtm)
(12)

Problem (12) could be solved by a standard quadratic program-

ming solver. We can also adapt the existing improved SVM

solver to solve this problem. For example, SMO (Sequential

Minimal Optimization) is still feasible, because the relationship

between any two entries of λm is defined with the constraint

λmYm = ρ(btm − st + βtm). The adaption of SMO to our

solution is orthogonal to this paper, which can be easily taken

into our algorithm. We will use Wolfe-dual and a quadratic

programming solver to find λm. With λm, the iterative variable
update could be summarized as follows:

wt+1m =
M

1 + ρM
(ρzt − ργtm + λt+1m YmXm) (13a)

zt+1 =
1

M
(
M∑

n

wt+1m +
M∑

m

γtm) (13b)

γt+1m = γtm + wt+1m − zt+1 (13c)

bt+1m =
1

ρ
λt+1m Ym + st − βtm (13d)

st+1 =
1

M
(
M∑

n

bt+1m +

M∑

m

βtm) (13e)

βt+1m = βtm + bt+1m − st+1 (13f)

Notice that in (13c) and (13f), gradient descent is used to

update γm and βm. Lemma 4.2 shows that if we update the

parameters according to (13), {wm} and {bm} will converge

to the optimal solution.

Lemma 4.2: By following iterative update (13), {wm} and
{bm} will converge to the optimal solution.

Proof: Problem (6) could be written in a general form as:

min
w1,w2

F1(w1) + F2(w2)

s.t. Aw1 = w2,

w1 ∈ S1, w2 ∈ S2.
(14)

Here, S1 = {w|Y1(X1w1 + b1) ≥ 1 − ξ1} and S2 =
{w|Y2(X2w2 + b2) ≥ 2 − ξ2} are the feasible sets of w1 and
w2. It has been proved in [15] and [4] that the convergence

of problem (14) is guaranteed as long as one of the following

two conditions is true: S1 and S1 are bounded; or AAT is

nonsingular. In our problem, A is an identity matrix, thus w1
and w2 will converge.

Take a closer look at the iterative update procedures (13),

wtm is only related to the local training set of Xm, Ym and

the global consensus variable zt−1. Hence, each wtm could be

updated in parallel by the local Mappers. A global Reducer is

in charge of updating zt by collecting the local training results
and finding the average of them. Actually, the Reducer does

not need to know the exact value of each local training result

as long as it is able to find the average of these local training

results. In section V, we present a secure summation protocol

at the Reducer to find the average value of local learning results

securely. After the Reducer finds zt, it sends zt back to each

Mapper to update wt+1m . This iterative update will continue

until z converges. Notice that Hadoop MapReduce may not

be suitable for iterative computation tasks, however, in [12],

Ekanayake and Li propose an iterative version of MapReduce

called Twister, which could be used to achieve iterative update

in (13).

B. Nonlinear SVM with Horizontally Partitioned Data

Non-linear version of the proposed scheme is not a trivial

modification of its linear version. Each Mapper may be able

to find the solution of the involved nonlinear SVM problem

by playing with kernel tricks as shown in Subsection III-B.

However, it could be very hard for Reducer to summarize

the local learning results. The reason is that while solving the

nonlinear SVM problem, the local learning result wm has never

been calculated explicitly. For example, with RBF kernels,

wm is an infinite dimensional vector. Kernel tricks are not

trying to find infinite dimensional vector, but they directly find

the discriminant function as f(x) =
∑
xi∈SV K(xi, x) + b.

Hence, a desired feature of our nonlinear version should be

the ability to summarize local learning results without knowing

them explicitly.

Kernel functions map the training data to a high-

dimensional space Rp whose complexity prohibits us from

exchanging the local learning result. However, although con-

sensus in Rp is hard to achieve, we may modify the consensus

constraint to achieve consensus in a reduced space Rl, where

l < p as GwTm = z. In this sense, G is an l × p matrix and

z is the global consensus of size 1 × l. Then, problem (6) is

rewritten as:

min
{wm}

M∑

m

1

2M
‖wm‖2 + C

M∑

m

‖ξm‖11
s.t. Ym[φ(Xm)wm − 1bm] ≥ 1− ξm,

ξm ≥ 0,
Gwm = z,

bm = b ∀m = 1, 2, ...M,

(15)

where φ(·) : Rk → R
p is the mapping from a low-dimensional

space to a high-dimensional space. Assume φ(Xm) is an Nm×
p matrix as the representation of each row of Xm in Rp. The

dimension-reduction matrix G is generated by G = φ(Xg),
where Xg is an l× k matrix of rank min(l, k). Each row of G
is generated by mapping one row of Xg to R

p.

Problem (15) is still hard to solve, because each row of G
is in Rp which we cannot directly operate on. However, recall

that the final goal for SVM is not to find wm and bm, but rather
to find the discriminant function fm(x) = wTmφ(x) + bm. The
following lemmas show that problem (15) could be approxi-
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mately solved and suggest a general form for its discriminant

function.

Lemma 4.3: For a fixed kernel K(·, ·) and the correspond-
ing RKHS R

p, if the SVM optimization problem could be

expressed with a loss function L : Rn → R and a non-

decreasing function Ω : R→ R in the following form,

min
f∈Rp

L(f(x1), f(x2), ...f(xn)) + Ω(‖f‖2), (16)

the functional f(·) could be expressed as f(·) =∑n
i αiK(xi, ·).
Proof: See the representer theorem[25].

Lemma 4.4: Applying Lemma.4.3 to problem (15), we

have

fm(·) =
∑

xi∈Xm

aiK(xi, ·) +
∑

xj∈Xg

cjK(xj , ·). (17)

Proof: For problem (15), we can find a loss function as

L : RNm+l → R. Among its Nm + l entries, the first Nm
entries represent the loss for Nm inequality constraints and the

last l entries represent the loss for the l equality constraints of
Gw = z. The max-margin objective function could be written

as a non-decreasing function as 1
2M ‖fm‖2.

Lemma. 4.4 also shows how problem (15) approximately

summarizes the local learning results: since {wm} lie in Rp,

the true consensus result w̃ should also lie in Rp. If we have

p independent vectors in Rp, we can perfectly reconstruct w̃.
However, because we cannot afford p vectors, we only use l
vectors to approximate w̃ as

∑
xj∈Xg

cjK(xj , ·). In section

VI, experiments on real-life data show that this approximation

gives reasonably good performance. Next, we will show how

to follow the similar process as in the previous subsection

to find the detailed iterative variable update. Firstly, find the

augmented Lagrangian as:

L =
M∑

m

{ 1

2M
‖wm‖2 − μTmξm +

ρ

2
‖Gwm − z + rm‖2

+ C‖ξm‖ − λTm[Ym(φ(Xm)wm − 1bm)− 1+ ξm]

+
ρ

2
‖bm − b+ sm‖2}

(18)

wm could be found by taking partial derivative of (18) and

setting it to zero:

∂L
∂wm

= 0

⇒wm = (I +
ρ

M
GTG)−1[φ(Xm)

TYmλm

+ ρGT (z − rm)].

(19)

Notice that the term GTG is a p × p matrix and we do

not know anything in Rp. However, with Sherman-Morrison-

Woodbury formula [16], (I+ρ/MGTG)−1 could be rewritten
as

(I +
ρ

M
GTG)−1 = I − ρ

M
GT (I +

ρ

M
GGT )−1G. (20)

Let Kg denote I + ρ
MGGT , by substituting (20) into (19), we

can find wm as:

wm = φ(Xm)
TYmλm − ρ

M
GTK−1

g K(Xg, Xm)Ymλm

+ ρGT (z − rm)− ρ2

M
GTK−1

g K(Xg, Xg)(z − rm)

(21)

Notice that the above equation holds because Gφ(Xm)
T =

K(Xg, Xm) and GGT = K(Xg, Xg). By substituting wm
back to (18), the Wolfe-dual could be written as:

λm :=arg min
0≤λm≤C

1

2
λmAλTm +BTλm

s.t. 1Ymλm = ρ(btm − st + βtm)
(22)

where

A = Ym[K(Xm, Xm)− ρ

M
K(Xm, Xg)K

−1
g K(Xg, Xm)]Ym

B = I − ρYmK(Xm, Xg)(z − rm)

+ Ym
ρ2

M
K(Xm, Xg)K

−1
g K(Xg, Xg)(z − rm)

Then the local training result mapped by G in Rk is calculated

by

zt+1m = Gwt+1m + rtm

= K(Xg, Xm)Ymλt+1m + ρK(Xg, Xg)(z
t − rtm)

− ρ

M
K(Xg, Xg)K

−1
g K(Xg, Xm)YMλm

− ρ2

M
K(Xg, Xg)K

−1
g K(Xg, Xg)(z

t − rtm) + rtm

(23)

Finally, the local training results are sent to the Reducer,

which will use a secure summation protocol to find the global

consensus as zt+1 = 1
M

∑M
m zt+1m . The iterative update is

summarized as follows:

λt+1m : Found by solving (22) (24a)

zt+1m : Calculated by (23) (24b)

γt+1m = γtm + zt+1m − zt+1 (24c)

zt+1 =
1

M

M∑

m

zt+1m (24d)

bt+1m =
1

ρ
λt+1m Ym + st − βtm (24e)

st+1 =
1

M
(

M∑

n

bt+1m +

M∑

m

βtm) (24f)

βt+1m = βtm + bt+1m − st+1 (24g)

Notice that convergence of iterative update (24) could be

proved by Lemma 4.2 as long as GGT is non-singular, i.e.

Xg could be randomly chosen such that K(Xg, Xg) is non-
singular. After training, learner m could classify a testing

sample x as:

fm(x) = K(x,Xm)Ymλm + ρK(x,Xg)(z − rm)

− ρ

M
K(x,Xg)K

−1
g K(Xg, Xm)Ymλm

− ρ2

M
K(x,Xg)K

−1
g K(Xg, Xg)(z − rm) + bm

(25)
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xN1 xN2 xN3 … xNkxN (k-1)xN (k-2)

… … … … … …

x(N-2)1 x(N-2)2 x(N-2)3 … x(N-2)kx(N-2) (k-1)x(N-2) (k-2)

Learner 1 Learner 2 Learner M…

Fig. 3: The training set is vertically partitioned

C. Vertically Partitioned Data

In this subsection, we present our scheme under the sit-

uation where the training data is vertically partitioned. The

vertically partitioned data could be visualized as shown in Fig.

3: each learner has N records, however, for each record, they

hold different attributes, i.e., the k attributes are distributed

among M learners.

The local learning task in this scenario is different from

that in the horizontally partitioned case. This is because of the

following several reasons. 1). The label yi, ∀i = 1, 2...N should

be agreed and shared among M learners. 2). Each learner only

has a share of w denoted as wm of size Nm × 1. 3). The
constraints are no longer separable because each inequality

constraint in problem (1) requires data from all the M learners.

Following the similar distribute-and-consensus idea as shown

in the previous section, we reformulate the problem as follows:

min
{wm}

M∑

m

1

2
‖wm‖2 + C‖ξ‖11

s.t. Y (z + b) ≥ 1− ξ,

ξ > 0,

z =
M∑

m

Xmwm.

(26)

In this problem, Y is an N × N diagonal matrix, whose

diagonal elements are the labels. z is an N×1 vector works as
the decoupling item. With z, the inequality constraint no longer
depends on training data from all the learners, which makes it

possible to decompose the problem. Solutions to problem (26)

and problem (1) are identical because the objective functions

and constraints are identical. We could use similar method

to find an iterative update of problem (26). Firstly, find the

augmented Lagrangian as:

L =
M∑

m

1

2
‖wm‖2 + ρ

2
‖z −

M∑

m

Xmwm + γ‖22
s.t. Y (z + b) ≥ 1− ξ,

(27)

where γ is the residual term. An alternative approach is used

to optimize (27) and the iterative updates are listed as follows:

{wt+1m } = arg min
{wm}

L({wm}, zt, γt) (28a)

zt+1 = argmin
z

L({wt+1m }, z, γt) (28b)

γt+1 = γt + zt+1 −
M∑

m

Xmwm. (28c)

The solution to problem (28) is straightforward: wm has

a closed-form by taking the partial derivative and setting it

to zero; z could be solved via its Wolfe-dual problem. The

solution is listed as follows:

wt+1m =ρ(1+ ρXT
mXm)

−1XT
m[z − c̄+ ctm + rt]

λ = arg min
0≤λ≤C

1

2
λTAλ+BTλ

s.t. 1Y λ = 0,

zt+1 = c̄t+1 − rt +
1

ρ
λY

rt+1 = rt + zt+1 − c̄t+1,

(29)

where we write c̄t =
∑M
m Xmwtm and ctm = Xmwtm for the

sake of simplicity, A = 1
ρY 11

TY , 1 is a N × 1 vector of all
ones, and B = −1+ Y (c̄t+1 − rt).

In this scenario, the Reducer is in charge of calculating c̄
with a secure summation protocol and finding z by solving

problem (28b) through its dual problem. The nonlinear version

under vertically partitioned scenario is a straightforward mod-

ification, because the global consensus in this scenario is z of

a fixed size independent of the kernel functions used. We only

need to substitute (I + ρXT
mXm)

−1 with a similar form as in

(20) and play with kernel tricks.

V. SECURITY ANALYSIS

There are two fundamentally different ways a private-

preserving machine learning scheme can disclose sensitive in-

formation: (a) side information during the run time is collected

and analyzed by the adversary; (b) the specified result itself

reveals sensitive aspects of the training data. For the first issue,

we need to be very careful about the information that could be

possibly revealed and the consequence. For example, in [8] and

[29], although the kernel is calculated in a privacy-preserving

manner (secure dot product), if the kernel matrix is obtained by

a learner with more than k training samples, he can calculate

all the private training samples of the other learners by solving

a set of linear equations, where k is the number of features. For

the second issue, clearly, there always exists a tradeoff between

revealing sensitive information and utility. A certain amount of

information is inevitably lost during training.

In this paper, we assume that: 1). The collaborative learners

work in a semi-honest manner, i.e., they will follow the

protocol to obtain the joint training result, but they are curious

about the private training sets of other parties. 2). The learners

understand the tradeoff between privacy and utility and agree

that the joint machine learning result does not reveal their

private training sets. However, if the local training result of

each iteration is collected, an adversary may be able to reverse
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engineer the private training set Xm. Hence, w
t
m is considered

sensitive and should not be revealed. 3). The Reducer also

works in a semi-honest manner, i.e., it is curious about the local

training results wtm but will follow the protocol to summarize

them. 4). Due to data locality, Map() is a local operation and

is trusted by each learner.

With these assumptions, our scheme is secure as long as

the local training results are averaged without disclosing each

individual value. In this paper, we use a coalition-resistance

secure summation protocol to average the local training result

as:

Protocol Coalition-resistance secure summation protocol

1: Each Mapper generates M -1 random numbers.

2: For each Mapper, the M -1 numbers are sent to other M -1

Mappers individually.

3: Each Mapper i sums over its generated numbers as Sedi
and its received number as Revi.

4: Each Mapper i sends wi + Sedi −Revi to the Reducer.

5: Reducer averages the received value to find z.

With this protocol, the Reducer is able to find the average

value because every generated random number is added once

and subtracted once. The individual local training results are

hidden by Sedi−Revi and coalition attack is prevented, i.e. the
individual training result is secure even if a group of Mappers

coalesce to attack one Mapper.

For the vertically partitioned scheme, the Reducer is in

charge of solving problem (26) to find z. The information

available to him is labels Y and c̄, where Y is shared by all the

learners and c̄ is calculated by our secure summation protocol

to hide Xmwm. Generally speaking, our scheme is secure

because: 1). Private data is only processed locally such that the

data holder never loses control over its data. 2). The process

of machine learning is hard to reverse, i.e., given wm, Xm

is still very hard to find. 3). To make the reverse engineering

even harder, {wm} are mixed together with a secure summation
protocol.

VI. PERFORMANCE ANALYSIS

In this section, we use three popular data sets to test the

performance of our scheme in terms of the convergence and

correctness. The three data sets include: the breast cancer

data set [2], which contains 9 feature attributes and 569

data instances; the Higgs bosons presence data set [3] that

contains 28 feature attributes and 11,000,000 data instances

(which we only use 11,000 of them); and optical character

recognition (OCR) of handwritten digits data set [2] which

contains 64 feature attributes and 5620 data instances. We use

the centralized SVM as the benchmark. Among these three

data sets, the cancer data set is the easiest one: with 50/50
training and testing, the correct classification ratio is 95%.
The Higgs data set is hard to classify because its two classes

are highly inseparable: with 50/50 training and testing, the

correct classification ratio is only 70%. The OCR data is easy

to be classify, with 50/50 training and testing, the correct

classification ratio is 98%. Cancer data is chosen to compare

the performance of our scheme against the bench mark. Higss

data is chosen to study the case when the knowledge is hard to

learn. OCR data set is chosen to study the vertical partitioned

scenario when there are many feature attributes which are

highly correlated with each other. Because in this scenario,

the distributed learners need to work closely with each other

to find the desired information.

Both our horizontally and vertically partitioned SVM

schemes are tested against the three data sets. For the horizon-

tally partitioned scenario, we assume there are 4 learners M =
4, and each record is randomly assigned to one learner. For the
vertically partitioned case, features are randomly assigned to

one of the learners. The slack variable penalty C = 50, and the
learning speed parameter ρ = 100. These two parameters are

highly related to the learning performance. If C is set to a high

value, then, the primary goal of SVM is to find the hyper-plane

that is able to separate the two classes strictly, but it gives a

lower priority to the width of the margin. If ρ is set to be high,

we put more emphasis on convergence than the max-margin

property.

The learning performance of the horizontally partitioned

case is shown in Fig. 4. For the 4 learners, we only plot the

results at learner 1 because the situations are similar at the

other learners. Fig. 4(a) and (b) plot the convergence of z.
It is shown that as the iterations increase, z is converging to

its optimal value. These two figures could be understood with

Fig. 4(e) and (f), to find the improvement of performance as

z is converging. Generally speaking, the Higgs data set takes

the longest time to converge because the knowledge is hard to

discover. If the local learning results are very different, then it

may take more effort for them to reach a consensus.

The results on the vertically partitioned data are also illus-

trated in Fig. 4. It is interesting to see that in Fig. 4(d), among

the three data sets, z is converging very fast with the cancer data
set, followed by the Higgs data set and finally the OCR data

set. There might exist two reasons for this phenomenon: firstly,

OCR data has the most number of feature attributes, and hence

there are more information to exchange; secondly, features of

one record in OCR data set are highly correlated, and thus the

distributed learners need to work more closely and intensively

to figure out the correlation between their local results. The

learning process could be clearly observed in Fig. 4(f) and (g).

After a few steps, the classifier gets a very good performance

over the cancer data, but for OCR, it takes quite a few iterations

for the distributed learners to construct an accurate classifier.

Similar situations happens to the nonlinear scheme. Compared

with Fig. 4 (b) and (f) we can see that the curve of z has some

sudden jumps, however the classification performance curve

in (f) doesn’t reflect those jumps. It may due to the fact that

features assigned to this learner are redundant features. Feature

selection could be used to remove the jumps, however, feature

selection is also a centralized operation. We may need to design

another totally different protocol to achieve distributed feature

selection.
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Fig. 4: Simulation results with three different data set

VII. CONCLUSION

In this paper, we studied the problem of collaborative

machine learning over distributed training data and proposed to

use the data locality property of big data processing framework

such as MapReduce to achieve privacy preservation. Generally

speaking, the collaborative learning problem is decomposed

into subtasks such that each subtask is only related to one share

of the training data. With this decomposition, local Mappers

are able to work independently to get local training results,

which are then summarized by a secure protocol on Reducer.

The proposed framework avoids secure operations on Mappers

and only use a limited number of cryptographic operations

on Reducer to achieve privacy-preservation with an affordable

computation overhead. Performance of the proposed scheme is

studied via theoretical analysis and extensive experiments over

three real-life data sets.
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