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ABSTRACT

In this paper, we study how datacenter energy cost can be
effectively reduced in the wholesale electricity market via
cooperative power procurement. Intuitively, by aggregating
workloads across a group of datacenters, the overall power
demand uncertainty of datacenters can be reduced, resulting
in less chance of being penalized when participating in the
wholesale electricity market. We use cooperative game theo-
ry to model the cooperative electricity procurement process
of datacenters as a cooperative game, and show the cost sav-
ing benefits of aggregation. Then, a cost allocation scheme
based on the marginal contribution of each datacenter to the
total expected cost is proposed to fairly distribute the aggre-
gation benefits among the participating datacenters. Finally,
numerical experiments based on real-world traces are con-
ducted to illustrate the benefits of aggregation compared to
noncooperative power procurement.
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1 INTRODUCTION

With the booming of Internet-based and cloud computing
services in recent years, datacenters hosting these services
have become ubiquitous in every sector of our economy, and
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their energy consumption has been skyrocketing. According
to a report [1] by the Natural Resources Defense Council,
datacenters in the U.S. consumed about 91 billion kWh of
electricity in 2013, representing 2% of total U.S. electrici-
ty consumption and costing U.S. businesses $13 billion in
annual electricity bills, and their total electricity consump-
tion is estimated to be 139 billion kWh in 2020. Energy cost
accounts for a significant fraction (about 42%) of the data-
center operating expense [2], and this fraction is growing at
an alarming rate of 12% annually [3]. Consequentially, reduc-
ing energy cost has become a critical concern for datacenter
operators.

In order to reduce the growing electricity bills of data-
centers, from the demand side, substantial efforts have been
made, ranging from hardware such as energy-efficient server-
s, storage devices, and network switches, to software such as
virtualization and dynamic CPU speed scaling and capacity
provisioning, which have led to dramatic improvements in
the energy-efficiency of datacenters. On the other hand, it is
also important for datacenters to manage their energy cost
from the supply side. As large consumers, datacenters typ-
ically have multiple options to procure electricity to meet
their power demand1. For instance, a datacenter may pur-
chase power from a retailer such as a local utility company
with a pre-specified rate by signing bilateral contracts be-
forehand [4]. It may also operate by leveraging on-site power
generators and energy storage systems [5].

Given the significant power consumption and deregulation
of electricity market, another promising opportunity to re-
duce datacenter energy cost is emerging: datacenters can di-
rectly participate in electricity market to meet their power
demand. While it is typical for consumers to buy electricity
from local utility companies, some independent system op-
erators (ISOs), such as Electric Reliability Council of Texas
(ERCOT) [6] and California ISO [7], have recently develope-
d a market that allows consumers to purchase electricity di-
rectly from power suppliers by actively participating in the
electricity market. Indeed, datacenter operators like Google
have been granted the authority to trade in the wholesale
electricity market for the purpose of managing their own en-
ergy cost [8]. The key advantage for datacenters to procure

electricity from the wholesale market instead of a local utility

company is that they can avoid the insurance premiums, ser-

vice charges, and mark-up included by utilities in retail rates

[9].

1Without ambiguity, we use energy and power interchangeably when
considering electricity demand and cost.
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However, a major challenge for datacenters in procuring
power directly from the wholesale market is the uncertainty
of market prices and their power demand. In most region-
s of U.S., the market for electrical power is organized into
a two-settlement structure: the day-ahead forward market
and the real-time balancing market. The consumers need to
make a commitment or bid about their scheduled energy
usage to the day-ahead market at first, and then any devi-
ations between the scheduled and actual usage are settled
in the real-time balancing market and subject to financial
penalties. Since the day-ahead market is often closed sever-
al hours (e.g., 14 to 38 hours in California ISO) ahead of
the actual operating time, this leaves datacenters vulnera-
ble to high deviation penalties due to their highly uncertain
workloads and associated power demand when bidding in
the day-ahead market. In addition, power demand and mar-
ket prices are uncertain and hard to predict as well due to
the dynamic nature of the market. Therefore, it is impera-
tive for datacenters to mitigate risks associated with these
sources of uncertainty in order to maximize the cost savings
in procuring power from the wholesale market directly.

In this paper, we aim to address the above challenge and
optimize datacenter participation strategies in the wholesale
electricity market for minimizing energy cost and facilitating
energy sustainability of datacenters. In particular, consider
a scenario where multiple independent datacenters operated
by different owners in the same region purchase power di-
rectly in the two-settlement electricity market. Although it
is risky for datacenters to participate in the market individu-
ally due to the uncertainty of their workloads and associated
power demand, this paper takes an aggregation-based ap-
proach that transforms these independent datacenters from
isolated entities into coordinated ones in the market. Our es-
sential idea is to exploit the statistical diversity of workloads
across different datacenters and incentivize them to bid col-
lectively in the day-ahead market. Intuitively, by aggregating
workloads from different datacenters, the uncertainty in the
mixture of workloads and associated power demand can be
reduced, resulting in less chance of being penalized for devi-
ations in the real-time balancing market and higher energy
cost savings.

To incentivize aggregation and fairly distribute aggrega-
tion benefits among datacenters, we propose to use cooper-
ative game theory. Specifically, the problem can be formu-
lated into a cooperative game with transferrable utility. In
this game, the set of players is the set of datacenters who
seek to cooperate in reducing electricity cost. We first prove
that coalitional formation can reduce energy cost compared
to individual power procurement in the wholesale electricity
market. Then our cooperative game is shown to be balanced
and therefore has a nonempty core. Given that the two exist-
ing cost allocation methods, the Shapley value and nucleolus,
are not applicable to our game, we design an efficient cost
allocation scheme that can guarantee mutual benefits for all
participating datacenters such that no one has the incentive

to break up from the coalition and thus locate a cost alloca-
tion in the core.

The rest of the paper is organized as follows. A brief
overview of cooperative game theory is given in Section 2. In
Section 3, we describe the models for datacenter power con-
sumption and two-settlement electricity market. In Section 4,
we model the datacenter aggregation process as a coopera-
tive game and quantify the benefits of aggregation. Then,
the core of the formulated game is shown to be nonempty,
and an efficient scheme is proposed to find a cost allocation
belonging to the core in Section 5. Simulation results based
on real-world traces are presented in Section 6. Related work
is reviewed in Section 7. Finally, the conclusion is given in
Section 8.

2 BACKGROUND: COOPERATIVE

GAME THEORY

In this section, we will briefly introduce the fundamental
concepts of cooperative game theory including the definition
for a cooperative game with transferable utility, the solution
concept (i.e., the core) of a cooperative game, two types
of cooperative games with nonempty core (i.e., the convex
games and balanced games), and widely-used cost allocation
methods (i.e., the Shapley value and nucleolus).

2.1 Cooperative Game with Transferable

Utility

In general, a cooperative game is defined by a pair (N , c).
The first element is the set of players N := {1, 2, . . . , N},
indexed by i ∈ N . Players may form different coalitions S ⊆
N to obtain a collective utility. The grand coalition N is the
set of all players. Secondly, c : 2N → R is the cost function
that assigns a real cost (i.e., the negative of the utility) to
each coalition S ⊆ N . Transferable cost implies that the
total cost represented by a real number can be divided in
any manner among the coalitional members [10].

2.2 Imputations and the Core

The cost function of a cooperative game is said to be subad-
ditive if it satisfies the following condition:

c(S) + c(T ) ≥ c(S ∪ T ), ∀S ,T ⊆ N , S ∩ T = ∅. (1)

For such cooperative game, it is to the mutual benefit of the
players to form the grand coalition N , since by subadditiv-
ity the amount received, c(N ), is at least as small as the
total amount received by any disjoint set of coalitions they
could form. Next, we focus on how to fairly split this amount
among participating players.

A cost allocation for the coalition S ⊆ N is a vector π ∈
R

N whose entry πi is the cost dispatched to each player i
in the coalition S (πi = 0, i /∈ S). Further, a cost allocation
π is said to be efficient if

∑

i∈N πi = c(N ), i.e., the total
amount received by the players should be equal to c(N ). A
cost allocation π is said to be individually rational if πi ≤
c({i}), i.e., no player will be expected to receive more cost
than acting individually. A cost allocation π for the grand
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coalition is said to be an imputation if it is both efficient and
individually rational. In cooperative game theory [11, 12],
the set of imputations for the game (N , c) is defined as

I =

{

π ∈ R
N :

∑

i∈N

πi = c(N ), πi ≤ c({i}), ∀i ∈ N

}

. (2)

Next, we introduce the solution concept of a cooperative
game. The core for the game (N , c) is defined as

C =

{

π ∈ R
N :

∑

i∈N

πi = c(N ),
∑

i∈S

πi ≤ c(S), ∀S ⊆ N

}

.

(3)
The core is a set of imputations such that no coalitions can
obtain a cost which is less than the sum of cost assigned by
forming the grand coalition. Obviously, if one can locate a
cost allocation vector that lies in the core, then the grand
coalition is optimal for the cooperative game.

2.3 Convex and Balanced Games

The core is always well-defined, but can be empty. However,
the convex games and balanced games are two types of co-
operative games which guarantee the existence of nonempty

core [13, 14]. A cooperative game is said to be convex if the
cost function satisfies the following condition:

c(S) + c(T ) ≥ c(S ∪ T ) + c(S ∩ T ), ∀S ,T ⊆ N . (4)

This implies the cooperative game has a submodular cost
function.

A map ρ : 2N → [0, 1] is said to be balanced if for all
i ∈ N ,

∑

S∈2N

ρ(S)1{i ∈ S} = 1, (5)

where 1{·} denotes the indicator function. Thus, the bal-
anced map indicates that the sum of weights ρ(S) assigned
for each coalition including player i will be equal to 1. Then
a cooperative game is said to be balanced if and only if for
any balanced map ρ,

∑

S∈2N

ρ(S)c(S) ≥ c(N ). (6)

2.4 Shapley Value

The Shapley value [15] as the cost allocation method is a
unique mapping ψ that satisfies a series of characteristic ax-
ioms such as efficiency, symmetry, dummy and additivity.
For a cooperative game (N , c) with transferable cost, the
Shapley value ψi(c) that distributes the cost for each player
i ∈ N is defined as

ψi(c) =
∑

S⊆N\{i}

|S|!(N − |S| − 1)!

N !
[c(S ∪ {i}) − c(S)] . (7)

We observe that in (7), the marginal contribution of each
player is represented as c(S ∪ {i})− c(S) and the coefficient
ahead of the marginal distribution is the probability that the
player i randomly joins the coalition S. Thus, the Shapley
value can be interpreted as the expected marginal contri-
bution of player i in the grand coalition N when it joins

the coalition S in a random order. It is guaranteed that the
Shapley value lies in the core if the game is convex [13].

2.5 Nucleolus

The nucleolus [16] is another common cost allocation method.
It uniquely exists in a cooperative game and satisfies the ef-
ficiency, individually rational, symmetry and dummy prop-
erties [10]. Different from axiomatically designing the cost
allocation scheme to ensure fairness as in the Shapley value,
the nucleolus aims at minimizing the dissatisfaction of the
players. The dissatisfaction of a coalition S given an impu-
tation π is measured by the excess. The definition of excess
is given by

e(π,S) =
∑

i∈S

πi − c(S). (8)

Since the core is defined as the set of imputations such that
∑

i∈S
πi ≤ c(S) for all coalitions S ⊆ N , it follows that an

imputation π is in the core if and only if all its excesses are
negative or zero [17]. In order to find the nucleolus, we first
need to locate an imputation that minimizes the maximum
of the excesses e(π,S) over all coalitions S by solving a linear
program. After this is done, one may have to solve a second
linear programming problem to minimize the next largest
excess, and so on. Therefore, in the worst-case, O(2N ) lin-
ear programs need to be solved, which is computationally
expensive [18].

3 SYSTEM MODEL

In this section, we start by introducing the datacenter power
consumption model and characterize the uncertainty of pow-
er demand for each datacenter. Then, the two-settlement
electricity market is described and the expected electricity
cost for each datacenter when participating in the market
individually is derived.

Consider a set N := {1, 2, . . . , N} of independent data-
centers participating in the same electricity market for power
procurement. For instance, SoftLayer, Google, Microsoft and
Amazon have all built large-scale datacenters in San Fran-
cisco Bay Area, and these datacenters are served by Califor-
nia ISO for wholesale power procurement. We explore the
scenario in which individual datacenters form a coalition to
collectively bid their aggregate power demand in the electric-
ity market as a single entity for cost savings. Without loss
of generality, we restrict our analysis to a single operating
hour.

3.1 Datacenter Power Consumption

Model

Assume each datacenter i ∈ N has Mi homogenous server-
s whose idle and peak power consumption are P idle

i and
P peak
i , respectively2. Users submit their requests (e.g., search

queries) to datacenters, and datacenters process these re-
quests to satisfy the quality-of-service (QoS) requirement as

2Note that a datacenter with heterogenous servers can be also viewed
as several datacenters, each having homogeneous servers. Therefore,
we focus on the homogenous case in this paper.
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indicated by the service-level agreement (SLA). When data-
center i keeps mi active servers to process the arriving user
requests, its IT power consumption can be estimated as [19]

Pi = mi

[

P idle
i + ui(P

peak

i − P idle
i )

]

, (9)

where ui is the average CPU utilization level across all server-
s at datacenter i.

We adopt a M/GI/1 Processor Sharing (PS) queue to mod-
el the service process at each server [20]. The workload ar-
rival rate at each datacenter i, measured in terms of the
average number of arriving user requests per unit time, is as-
sumed to be λi. Let µi denote the service rate at which user
requests are processed by a server at datacenter i. Then the
average CPU utilization level in datacenter i is calculated as
ui = λi/(miµi). Therefore, the power consumption model
(9) can be rewritten as

Pi = miP
idle
i +

λi

µi

(

P peak

i − P idle
i

)

. (10)

Since each user request has a QoS requirement, datacen-
ters need to turn on enough servers to meet that require-
ment. Here we use the average response time as the QoS
metric. Based on the M/GI/1/PS queuing model, the aver-
age response time of user requests given mi active servers in
datacenter i is represented as

Ti =
1

µi − λi/mi

. (11)

Let Tmax
i denote the maximum average response time of user

requests that can be tolerated at datacenter i. Then to ensure
that Ti ≤ Tmax

i , we obtain the following feasible range for
the number of active servers at datacenter i:

λi

µi − 1/Tmax
i

≤ mi ≤Mi. (12)

Here, we relax the constraint that requires mi to be integer
given the fact that datacenters usually contain thousands of
servers. It is assumed that each datacenters turn on the min-
imal number of active servers without violating their QoS
requirement using the dynamic capacity provisioning tech-
nique [21, 22]. Therefore the IT power consumption of each
datacenter i is

Pi =
λi

µi − 1/Tmax
i

P idle
i +

λi

µi

(

P peak
i − P idle

i

)

. (13)

In order to incorporate the non-IT (e.g. cooling, lighting)
power consumption of datacenters, we denote the average
power usage effectiveness (PUE) as γi, which is defined as
the ratio of the total power consumption to the IT power
consumption at datacenter i. It follows that the total power
demand Ei of datacenter i is given by

Ei = θiλi, (14)

where θi is a constant defined as

θi := γi

(

P idle
i

µi − 1/Tmax
i

+
P peak
i − P idle

i

µi

)

. (15)

When datacenter i bids in the day-ahead market one day
ahead, the user request arrivals for the next day are uncer-
tain, and thus the average workload arrival rate λi can be
modeled as a random variable whose probability distribution
can be empirically estimated from historical data. It follows
that the actual datacenter power demand Ei(λi) as a lin-
ear function of the average workload arrival rate λi is also a
random variable.

3.2 Two-Settlement Electricity Market

Consider a wholesale electricity market managed by an ISO
with a two-settlement structure in the region through which
the datacenters procure power. It consists of a day-ahead for-
ward market and a real-time balancing market. In the day-
ahead forward market, participants bid and schedule power
transactions for each hour of the following day before the
gate closure. After that, the ISO clears the market and cal-
culates the day-ahead market clearing price for each hour as
the intersection between the aggregate supply and demand
curves. For instance, for California ISO, the day-ahead for-
ward market closes for bids and schedules by 10 AM and
clears by 1 PM on the day prior to the operating day. The
schedules cleared in the day-ahead market are financially
binding. Any deviations between the day-ahead committed
schedule and actual power consumption/generation will be
settled in the real-time balancing market during the operat-
ing day. If the actual consumption is more than or produc-
tion is less than the committed schedule, the energy shortfall
will be purchased in the balancing market at the negative
imbalance price, which is usually higher than the day-ahead
price. If the actual consumption is less than or production
is more than the committed schedule, the energy surplus
will be sold at the positive imbalance price, which is usually
lower than the day-ahead price. Therefore, power deviations
from day-ahead commitments normally result in penalties
for participants.

Specifically, for the considered wholesale market, let pd ∈
R

+ be the market clearing price in the day-ahead forward
market, p− ∈ R

+ be the negative imbalance price for ener-
gy shortfall, and p+ ∈ R

+ be the positive imbalance price
for energy surplus. The datacenters are assumed to be price-
taking because their energy consumption are often too small
to influence the market. The market prices (pd, p−, p+) are
not known to the datacenters at the time of bidding in the
day-ahead market and therefore modeled as random vari-
ables with known expected values denoted by µd

p, µ
−
p , and

µ+
p , respectively, which can be estimated empirically from

historical market data. As explained before, without loss of
generality, we assume µ+

p ≤ µd
p ≤ µ−

p . Moreover, the market

prices (pd, p−, p+) are assumed to be statistically indepen-
dent of the workload arrival rates (λi,∀i).

Suppose that each datacenter i ∈ N bids a power procure-
ment amount Qi in the day-ahead market. With the above
models and assumptions, it follows that the expected cost
of datacenter i from participating in the market individually
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can be calculated as

Φi = µd
pQi + µ−

p E[(Ei −Qi)
+]− µ+

p E[(Qi − Ei)
+], (16)

where (x)+ := max(x, 0), µd
pQi denotes the day-ahead trad-

ing cost, µ−
p E[(Ei −Qi)

+] denotes the shortfall penalty, and

µ+
p E[(Qi − Ei)

+] denotes the surplus profit.

4 COALITIONAL DATACENTER

BIDDING

In this section, we start by introducing the datacenter aggre-
gation model where multiple datacenters can form a coalition
to bid in the day-ahead market collectively. Then, it can be
verified that by bidding power demand aggregately in the
day-ahead market, the total electricity bill can be effectively
reduced based on the fact that datacenter aggregation can
reduce the uncertainty of the total workload arrivals.

4.1 Datacenter Aggregation as a

Cooperative Game

Datacenters can form a coalition and bid collectively in the
day-ahead market. Any coalition S ⊆ N represents an agree-
ment among the datacenters in S to act as a single entity in
the market. The aggregated datacenter power demand of a
coalition S ⊆ N is specified by

ES =
∑

i∈S

Ei. (17)

Further, we denote the cumulative distribution function (CD-
F) of ES as

FS(e) = Pr(ES ≤ e). (18)

The corresponding quantile function is given by

F−1
S (ε) = inf {e ∈ [Emin

S , Emax
S ] : ε ≤ FS(e)}, (19)

where Emin
S and Emax

S are the lower and upper bounds of the
aggregated power demand, which depends on the minimum
and maximum workload arrival rates.

Next, we use cooperative game theory [23] to model this
cooperation process as a cooperative game (N , c) with trans-
ferable cost since it is under a multi-agent scenario where
each datacenter tends to minimize its own net cost. In our
model, the set of datacenters N is the set of players in the
cooperative game. Moreover, we assume each datacenter al-
ways seeks to minimize its own electricity cost, and then the
cost function c(S) associated with every coalition S ⊆ N is
represented as its minimum expected energy cost calculated
as

ΦS = µd
pQS + µ−

p E[(ES −QS)
+]− µ+

p E[(QS −ES)
+], (20)

c(S) = min
QS≥0

ΦS , (21)

where QS is the bid amount of any coalition S in the day-
ahead market. We assume the market prices for the coalition-
al bid is the same as that of individual bids. This assumption
is acceptable since the datacenters are assumed to be rela-
tively small [24] compared to all other consumers participat-
ing in the electricity market so that their operations have
little impact on the cleared prices of the day-head market

or real-time market. Solving (21) as a news-vendor problem
[25, 26], the optimal day-ahead bid and expected cost are
given in the following theorem:

Theorem 4.1. The optimal day-ahead bid of any coalition

S is given by

Q∗
S = F−1

S (ε∗), where ε∗ =
µ−
p − µd

p

µ−
p − µ+

p

. (22)

The optimal expected cost is given by

c(S) = µ+
p

∫ ε∗

0

F−1
S (θ) dθ + µ−

p

∫ 1

ε∗
F−1
S (θ) dθ. (23)

Proof. The proof is referred to Appendix A. �

4.2 The Benefits of Aggregation

Intuitively, no group of datacenters can do worse by joining a
coalition than by acting noncooperatively since aggregation
can reduce uncertainty. We will prove this by the following
theorem:

Theorem 4.2. Given an arbitrary coalition S ⊆ N , let

{Q1, Q2, . . . , Q|S|} be a set of |S| individual day-ahead bids.

For QS =
∑

i∈S Qi we have:

ΦS(QS) ≤
∑

i∈S

Φi(Qi). (24)

Proof. The proof is referred to Appendix B. �

It is straightforward to see that the expected cost by par-
ticipating in the market collectively is less than the sum of
that by participating in the market individually. That is, the
datacenters save the expected cost of

∑

i∈S
Φi(Qi)−ΦS(QS)

collectively via aggregation. Further, we establish some prop-
erties of the cost function associated with every coalition.

Lemma 4.3. The optimal expected cost c(S) of any coali-

tion S has following properties:

(1) Positive homogeneity: For any scalar β ≥ 0, c(βS) =
βc(S).

(2) Subadditivity: For any two disjoint coalitions S1 and

S2, if coalition S1 ∪ S2 forms, then c(S1 ∪ S2) ≤
c(S1) + c(S2).

Proof. The proof is referred to Appendix C. �

From positive homogeneity, we observe that when the ag-
gregated power demand is scaled, the corresponding value
of the optimal expected cost will also be scaled in the same
proportion. From subadditivity, we observe that for ratio-
nal datacenters who always try to minimize their cost, they
will form a large-size coalition to benefit more from the ag-
gregation. It is straightforward to see in our game that all
the datacenters will form the grand coalition N in order to
minimize their total expected cost.
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5 COST ALLOCATION MECHANISM

In the section, we focus on how to find a cost allocation vec-
tor π as defined in Section 2.2 to split the total expected cost
to each datacenter in the grand coalition. First, we show that
the core of our cooperative game exists and is nonempty by
proving it is a balanced game. Next, we verify that our game
is nonconvex, and hence the Shapley value is not applicable
to locate the core of our game. Last, we propose a cost al-
location scheme based on the marginal contribution of each
datacenter to the total cost in the grand coalition.

5.1 Existence of the Nonempty Core

As shown in Section 2, both the convexity and balancedness
can guarantee the core of a cooperative game to be nonemp-
ty. Since the convexity of a cooperative game is a stronger
condition compared to the balancedness, we prove the exis-
tence of the core in terms of balancedness by the following
theorem:

Theorem 5.1. The cooperative game (N , c) for datacen-

ter aggregation is balanced and has a nonempty core.

Proof. Given an arbitrary balanced map ρ : 2N → [0, 1],
by following the concept of the balanced game, we have
∑

S∈2N

ρ(S)c(S) =
∑

S∈2N

c(ρ(S)S) (25)

≥ c




∑

S∈2N

ρ(S)S



 (26)

= c




∑

S∈2N

ρ(S)

(
⋃

i∈N

1{i ∈ S}i

)



= c




⋃

i∈N




∑

S∈2N

ρ(S)1{i ∈ S}



 i



 (27)

= c

(
⋃

i∈N

i

)

= c(N ),

where (25) is because of the positive homogeneity of c(S),
(26) is because of the subadditivity of c(S), and (27) is de-
rived by the definition of balanced map ρ. Therefore, the
cooperative game (N , c) is balanced and has a nonempty
core. �

5.2 Marginal Cost Allocation

Two prominent cost allocation schemes are described in Sec-
tion 2. However, both of them are not applicable to solve
our cooperative game. The Shapley value can be guaranteed
to lie in the core if the cooperative game is convex. Howev-
er, as shown through a counterexample in Appendix D, our
game is not convex. Therefore, the Shapley value does not
necessarily belong to the core and hence is not applicable to
allocate cost in our game. The nucleolus uniquely exists and
can be used as a cost allocation scheme in our game. How-
ever, as mentioned before, in the worst-case scenario, O(2N )

linear programs need to be solved in order to get the cost
allocation vector, which is computationally expensive.

Here, we propose a cost allocation scheme based on the
marginal contribution of each datacenter to the total expect-
ed cost when participating in the grand coalition and prove
the resulting cost allocation vector is in the core. We define
an aggregation level vector α = [α1, . . . , αN ]T , where each
element 0 ≤ αi ≤ 1 represents the fraction of datacenter
power demand Ei that participates in the aggregative pow-
er procurement. Thus, the weighted power demand of the
aggregation with the aggregation level vector α is denoted
as

Eα,N =
N∑

i=1

αiEi, (28)

whose quantile function is represented by F−1
α,N (ε) and de-

fined similar to (19). Then by applying Theorem 4.1, we can
obtain the optimal expected cost of the weighted power de-
mand as

cα(N ) = µ+
p

∫ ε∗

0

F−1
α,N (θ) dθ + µ−

p

∫ 1

ε∗
F−1
α,N (θ) dθ. (29)

The positive homogeneity and subadditivity proved in Lem-
ma 4.3 can be easily extended to the case where we consider
the weighted optimal expected cost cα(N ). Further, we show
another property as follows:

Lemma 5.2. The weighted optimal expected cost cα(N )
of any coalition S is nonincreasing over α, i.e., for any two

aggregation level vectors, if α � α
′3, then cα(N ) ≤ c

α
′(N ).

Proof. Given two aggregation level vectors α and α
′

where α � α
′, then for any element in the vector α − α

′,
we have 0 ≤ αi − α′

i ≤ 1,∀i ∈ N . Using the subadditivity
property, we have

cα(N ) ≤ c
α

′(N ) + c
α−α

′(N ), (30)

which indicates the nonincreasing property. �

According to Lemma 5.2, the optimal expected cost will
be achieved when α = 1, where 1 ∈ R

N×1 is an all-one
vector. Then it follows that cα(N )|α=1 = c(N ).

To distribute the total expected cost c(N ) among the dat-
acenters in the grand coalition, we compute the expected
cost for each datacenter i as

πi =
∂cα(N )

∂αi

∣
∣
∣
α=1

, ∀i ∈ N . (31)

Indeed, πi can be decomposed as the multiplication of two
terms:

πi =
∂cα(N )

∂Eα,N

∣
∣
∣
α=1

×
∂Eα,N

∂αi

∣
∣
∣
α=1

, ∀i ∈ N , (32)

where the second term is exactly the power demand Ei of
each datacenter. On the other hand, the first term is the par-
tial derivative of the weighted optimal expected cost with
respect to the weighted power demand and then evaluating

3The operator � represents component-wise vector comparison.
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Table 1: Simulation Parameters

Mi µi (requests/s) Tmax
i (ms)

Datacenter 1 10000 200 100

Datacenter 2 12500 250 80

Datacenter 3 15000 300 60

Datacenter 4 17500 350 40

at the full aggregation level, i.e., α = 1, which can be consid-
ered as the marginal cost assigned to each datacenter. There-
fore, the multiplication of the marginal cost and power de-
mand gives the distributed cost to each datacenter. Further,
we prove that the cost allocation vector π = [π1, . . . , πN ]T

given in (31) lies in the core as shown in following theorem:

Theorem 5.3. The resulting cost allocation vector of the

proposed cost allocation scheme is fair and lies in the core of

our cooperative game.

Proof. The proof is referred to Appendix E. �

The most significant advantage of exploiting this method
is its low computational complexity. Compared to using the
nucleolus, we only need to calculate O(N) equations.

6 NUMERICAL EXPERIMENTS

In this section, we first introduce our simulation setup and
then conduct trace-driven simulations to show the benefits of
datacenter aggregation in purchasing power in the wholesale
electricity market and the effectiveness of our proposed cost
allocation scheme.

6.1 Simulation Setup

A set of four independent datacenters N = {1, 2, 3, 4} is con-
sidered in our simulations. The total number of servers for
each datacenter is 10,000, 12,500, 15,000 and 17,500, respec-
tively. Assume the idle power and peak power of each server
is 150 W and 250 W, respectively. Besides, the average PUEs
of all the datacenters are set to 1.5. The average service rate
of a server in each datacenter is set to be 200, 250, 300 and
350 requests per second, respectively. The maximum aver-
age response time for each datacenter is set to be 100, 80, 60
and 40 ms, respectively. The above simulation parameters
are summarized in Table 1.

The real-world dataset we use to simulate the workloads
is from the Google cluster trace [27]. The selected dataset
includes workload information over 29 days (i.e., 696 hours)
during May 2011 for a cluster of 12,500 severs. We repeat the
original data and extend it to 1008-hour workloads (i.e., 42
days). Then, we randomly choose 4 different 720-hour (i.e.,
30 days) portions from the extended dataset as our datacen-
ter workloads. Figure 1a shows the CDFs of the normalized
datacenter workload arrival rate for four datacenters at hour
22. Then we can estimate the power demand of each data-
center according to (14). The CDFs of the power demand
for four datacenters are depicted in Figure 1b.
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Figure 1: CDFs of the normalized datacenter work-

load arrival rate and power demand at hour 22.

In our simulations, datacenters can purchase power either
individually or cooperatively by forming the grand coalition.
Moreover, we assume datacenters bid their power demand
in the day-ahead market for each hour in the following op-
erating day. By default, the expected day-ahead price µd

p is
set to be 50 cents per kWh, the expected negative imbalance
price µ−

p is set to be 2 dollars per kWh, and the expected

positive imbalance price µ+
p is set to be 20 cents per kWh in

the simulations.
Last, all our simulations are conducted on a desktop com-

puter with an Intel Core i7-4790 3.60GHz CPU and 8GB
RAM using MATLAB R2016a.

6.2 Experimental Results

In this section, we simulate and analyze how datacenters can
benefit from forming the grand coalition to save their elec-
tricity cost when purchasing power in the wholesale electrici-
ty market. Here, we consider the case where each datacenter
bids its power demand individually by minimizing its expect-
ed energy cost as the baseline scenario for comparison.

Benefits of Aggregation. We first observe the benefit-
s of coalitional bidding in the wholesale market. Based on
Theorem 4.1, we can calculate the optimal day-ahead bid
Q∗

S of any coalition S. Figure 2 shows the resulting optimal
day-ahead bidding level of our proposed method and the
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Figure 2: Day-ahead bidding level comparison over

24 hours.
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Figure 3: Total expected cost comparison over 24

hours.

sum of optimal individual bidding level in the baseline over
24 hours. Figure 3 shows the energy cost comparison of our
proposed approach and the baseline. The result of the base-
line scenario is obtained by adding up the optimal expected
electricity cost of each datacenter when they bid in the day-
ahead market individually, while the result of the proposed
method is obtained by letting datacenters form the grand
coalition to bid in the day-ahead market cooperatively. It is
shown in Figure 3 that the total electricity cost is effectively
reduced by cooperative day-ahead bidding, which validates
the subadditivity property of our cooperative game given in
Lemma 4.3. The average hourly cost saving is around 11.03%
under the current setting.

Cost Allocation. Next we focus on how to fairly dis-
tribute the total energy cost after coalitional bidding among
each participating datacenter using our proposed cost allo-
cation method. We split the total expected cost based on
the marginal contribution of each datacenter in the grand
coalition by applying the proposed cost allocation scheme
in Section 5.2. Figure 4 presents the cost allocation to each
datacenter at hour 22. The height of each bar (yellow bar
plus blue bar) denotes the expected cost of each datacenter
when it bids individually in the day-ahead market at hour 22.
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Figure 4: Cost allocation of each datacenter at hour

22 under the current setting.

0 5 10 15 20 25

Hour

0

5

10

15

20

25

30

35

C
os

t S
av

in
g 

P
er

ce
nt

ag
e 

(%
)

Datacenter 1
Datacenter 2
Datacenter 3
Datacenter 4

Figure 5: Individual cost saving percentage of each

datacenter after coalitional day-ahead bidding over

24 hours.

The height of yellow bar shows the reduced cost of each dat-
acenter after coalitional day-ahead bidding. The cost saving
percentage of each datacenter over 24 hours in a day is given
in Figure 5. It can be observed that our proposed allocation
method can always ensure positive cost reductions for each
datacenter and the cost saving amount of each datacenter is
different, depending on its contribution to the aggregation
benefits.

Table 2 presents the noncooperative and coalitional elec-
tricity cost of each coalition at hour 22. The last colum-
n gives the corresponding excesses e(π,S) defined in (8).
From row 1 to row 14, the calculated excesses are all neg-
ative which satisfies the condition of subgroup rationality,
i.e.,

∑

i∈S
πi ≤ c(S). The last row indicates that our cost

allocation is efficient since
∑

i∈N πi = c(N ). It verifies that
our proposed cost allocation lies in the core of the cooper-
ative game since both subgroup rationality and efficiency
conditions are satisfied.

Impact of Price Penalty Ratio. Now we present how
market prices affect the cost saving and the day-ahead bid of
each datacenter when they form the grand coalition. Accord-
ing to Theorem 4.1, the optimal day-ahead bid depends on
the quantile function where the percentile ε∗ is decided by
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Figure 6: Cost saving percentage of each datacenter at hour 22 when the price penalty ratio ω is 0.25, 0.50

and 0.75, respectively.

Table 2: Cost comparison for all coalitions of four

datacenters at hour 22

S c(S)
∑

i∈S πi

∑

i∈S πi − c(S)

1 {1} 5492.2 4937.7 −554.5
2 {2} 4075.6 3639.0 −436.6
3 {3} 3099.8 2720.8 −379.0
4 {4} 2187.8 1450.4 −737.4
5 {1, 2} 8809.2 8576.7 −232.5
6 {1, 3} 8132.5 7658.5 −474.0
7 {1, 4} 7018.5 6388.1 −630.4
8 {2, 3} 6748.7 6359.8 −388.9
9 {2, 4} 5941.8 5089.4 −852.4
10 {3, 4} 4966.8 4171.2 −795.6
11 {1, 2, 3} 11498.0 11297.5 −200.5
12 {1, 2, 4} 10300.0 10027.1 −272.9
13 {1, 3, 4} 9574.0 9108.9 −465.1
14 {2, 3, 4} 8454.0 7810.2 −643.8
15 {1, 2, 3, 4} 12747.9 12747.9 0

Table 3: The percentage of the average cost saving of

each datacenter under different price penalty ratios

ω = 0.25 ω = 0.50 ω = 0.75

Datacenter 1 10.11% 6.23% 3.08%

Datacenter 2 10.17% 7.05% 3.78%

Datacenter 3 14.67% 8.15% 4.98%

Datacenter 4 17.12% 8.23% 4.90%

expected electricity prices µd
p, µ

−
p and µ+

p . For the simplic-
ity of presentation, we set the expected positive imbalance
price µ+

p to be 0 but it does not affect our analytical analysis
beforehand. It follows that the percentile ε∗ will reduce to
1− µd

p/µ
−
p . Under this simplification, we introduce the price

penalty ratio ω defined as µd
p/µ

−
p [25]. In order to obtain

different price penalty ratios, we fix the expected day-ahead
price µd

p as a constant and adjust the expected negative im-

balance price µ−
p to different values.
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Figure 7: Day-ahead bidding level comparison under

price penalty ratios from 0 to 1.

Figure 6 depicts the cost saving percentage of each dat-
acenter at hour 22 when the price penalty ratio ω is 0.25,
0.50 and 0.75, respectively. Further, the percentage of the
average cost saving of each datacenter over 24 hours is list-
ed in Table 3. We can observe that the percentage of the
average cost saving decreases when the price penalty ratio
ω increases. This is intuitive since we have less chance to
reduce cost through aggregation when the penalty price is
lower. Indeed, when the expected negative penalty price is
the same as the expected day-ahead electricity price, there
is no need for aggregation since one could always buy any
shortfall from the real-time market without penalty.

Figure 7 shows the changes of day-ahead bidding level of
the baseline and the proposed method under different price
penalty ratios. It can be observed that under both cases, the
day-ahead bidding level decreases as the price penalty ratio
increases. The reason is that when the price penalty ratio
is near 0, datacenters behave more conservatively since the
expected negative imbalance price is much higher than the
expected day-ahead price. In order to avoid high penalty for
energy shortfall, they tend to bid more power amount to low-
er the possible mismatch between committed power supply
in the day-ahead market and realized power demand in the
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real-time market. On the other hand, when the price penalty
ratio is approaching 1, datacenters can buy any shortfall in
the real-time market without penalty and therefore tend to
bid less. Moreover, the change rate of bidding level of our
proposed method with respect to the price penalty ratio is
smaller than that of the baseline. This is due to the fact
that the proposed method has a smaller power demand un-
certainty and therefore is less sensitive to the price penalty
ratio.

7 RELATED WORK

In the past decade, multiple schemes have been proposed to
reduce the electricity bill of datacenters. From the demand
side, dynamic capacity provisioning [21, 28, 29] is develope-
d to reduce energy cost by dynamically turning off servers.
Dynamic CPU speed scaling [30–32] is shown to reduce the
energy usage of datacenters by dynamically adapting the pro-
cessing speed of a server to the current load. Geographical
load balancing [20, 33–35] is developed to exploit the spatial
diversity of electricity prices to minimize the energy cost of
geographically distributed datacenters by dynamically rout-
ing the user requests to regions with lower energy prices.
Different from their works, in this paper we consider data-
centers to minimize the energy cost from the supply side by
participating in the wholesale electricity market. From the
supply side, datacenters can purchase electricity from the re-
tail market [36, 37] with a fixed electricity price by signing bi-
lateral contracts. They can also participate in the wholesale
electricity market [4, 38–40] to exploit uncertainty of elec-
tricity prices and workloads to minimize their energy cost.
Exploiting the temporal diversities of electricity prices to re-
duce energy cost using storage or delay-tolerant workload
has also been investigated in [41–43]. These papers consider
datacenters with the same owner participating in different
wholesale electricity markets. However, in our paper we fo-
cus on the scenario where datacenters managed by different
independent owners within the same region jointly partici-
pate in the wholesale electricity market. Therefore, we need
to apply game-theoretic methods to model this multi-agent
problem instead of optimization approaches.

8 CONCLUSION

In this paper, we have proposed a new approach to mini-
mize the electricity cost for datacenters participating in the
wholesale electricity market. The electricity cost can be ef-
fectively reduced by bidding in the day-ahead market collec-
tively since aggregation can reduce the uncertainty of power
demand. We model this aggregation process as a coopera-
tive game and present a cost allocation mechanism based
on the marginal contribution of each datacenter to the total
expected cost to fairly distribute the optimal expected cost
to each datacenter within the grand coalition. Finally, simu-
lations based on real-world traces verify the effectiveness of
our proposed cost saving method. In the future, we plan to
investigate how to fairly distribute the actual realized cost
instead of the expected cost to each participating datacenter.
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APPENDIX

A PROOF OF THEOREM 4.1

We first rewrite (21) as below:

c(S) = min
QS

µd
pQS + µ−

p

∫ Emax

S

QS

(u−QS)fS(u) du

− µ+
p

∫ QS

Emin

S

(QS − u)fS(u) du, (33)

where fS is the corresponding probability density function
(PDF) of the CDF as defined in (18). Then by applying
the first order optimality condition associated with Leibniz
integral rule, we have

µd
p − µ−

p (1− FS(QS))− µ+
p FS(QS) = 0, (34)

Q∗
S = F−1

S (ε∗), where ε∗ =
µ−
p − µd

p

µ−
p − µ+

p

. (35)

Optimal expected cost is given by direct substitution of Q∗
S

into (33):

c(S) = µd
pQ

∗
S + µ−

p

∫ Emax

S

Q∗
S

(u−Q∗
S)fS(u) du

− µ+
p

∫ Q∗
S

Emin

S

(Q∗
S − u)fS(u) du

= µd
pQ

∗
S + µ−

p

∫ 1

ε∗
(F−1

S (θ)−Q∗
S) dθ

− µ+
p

∫ ε∗

0

(Q∗
S − F−1

S (θ)) dθ

= Q∗
S (µd

p − µ−
p + ε∗(µ−

p − µ+
p ))

︸ ︷︷ ︸
=0

+ µ+
p

∫ ε∗

0

F−1
S (θ) dθ + µ−

p

∫ 1

ε∗
F−1
S (θ) dθ. (36)

B PROOF OF THEOREM 4.2

We introduce an ancillary random variable Xi and rewrite
(20) in terms of Xi as follows:

Xi := Ei −Qi, (37)

ΦS(QS) = µd
pQS + µ−

p E
[(∑

i∈S

Xi

)+]

− µ+
p E
[(
−
∑

i∈S

Xi

)+]
, (38)

∑

i∈S

Φi(Qi) = µd
p

∑

i∈S

Qi + µ−
p E
[∑

i∈S

(
Xi

)+]

− µ+
p E
[∑

i∈S

(
−Xi

)+]
. (39)
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By adopting the equivalent forms of (x)+:

(x)+ := max(x, 0) :=
x+ |x|

2
, (40)

(38)−(39) =

µ−
p E

[∑

i∈S
Xi +

∣
∣
∑

i∈S
Xi

∣
∣

2
−
∑

i∈S

Xi + |Xi|

2

]

− µ+
p E

[∣
∣
∑

i∈S
Xi

∣
∣−
∑

i∈S
Xi

2
−
∑

i∈S

|Xi| −Xi

2

]

=

(
µ−
p − µ+

p

2

)

E
[(∣
∣
∑

i∈S

Xi

∣
∣−
∑

i∈S

|Xi|
)]

≤ 0. (41)

The above inequality holds according to the triangle inequal-
ity, i.e.,

∣
∣
∑

i∈S
Xi

∣
∣ ≤

∑

i∈S
|Xi| and also by assumption, we

have µ−
p ≥ µ+

p . Therefore, ΦS(QS) ≤
∑

i∈S
Φi(Qi).

C PROOF OF LEMMA 4.3

First we prove the positive homogeneity. The CDF of the
positively scaled ES is denoted as

FβS(u) = Pr(βES ≤ u) = FβS

(
u

β

)

.

It follows that the quantile function of FβS(u) is given by

F−1
βS (ε∗) = βF−1

S (ε∗).

Using the results from Theorem 4.1, we can prove the posi-
tive homogeneity as

c(βS) = µ+
p

∫ ε∗

0

F−1
βS (θ) dθ + µ−

p

∫ 1

ε∗
F−1
βS (θ) dθ

= β

(

µ+
p

∫ ε∗

0

F−1
S (θ) dθ + µ−

p

∫ 1

ε∗
F−1
S (θ) dθ

)

= βc(S). (42)

Next we prove the subadditivity as

c(S1) + c(S2) = min
QS1

ΦS1
(QS1

) + min
QS2

ΦS2
(QS2

)

= ΦS1
(Q∗

S1
) + ΦS2

(Q∗
S2
), (43)

where Q∗
S1

and Q∗
S2

are the optimal day-ahead bids of their
respective minimization problems. It follows from Theorem 4.2
that

ΦS1
(Q∗

S1
) + ΦS2

(Q∗
S2
) ≥ ΦS1∪S2

(Q∗
S1

+Q∗
S2
)

≥ ΦS1∪S2
(Q∗

S1∪S2
)

= c(S1 ∪ S2), (44)

where Q∗
S1∪S2

is the optimal solution of the expected cost
minimization problem under coalition S1 ∪ S2, while Q

∗
S1

+
Q∗

S1
is a feasible solution of the minimization problem, then

it follows that c(S1 ∪ S2) ≤ c(S1) + c(S2).

D PROOF OF NONCONVEX GAME

Consider a cooperative game involving three datacenters, in-
dexed by A1, A2 and A3, respectively. We assume the mar-
ginal distribution of A1 and A2 are given by

Ai =

{
2, w.p. 0.5

4, w.p. 0.5
∀i = 1, 2.

Further, assume A3 is perfectly positively correlated to A2,
i.e., A3 = A2. Set the expected day-ahead, negative imbal-
ance and positive imbalance prices as µd

p = 0.9, µ−
p = 1.4

and µ+
p = 0.4, respectively. Then based on Theorem 4.1, we

have:

ε∗ =
1.4− 0.9

1.4− 0.4
= 0.5,

c({1}) = c({2}) = c({3}) = 3.2,

c({1, 2}) = c({1, 3}) = 5.9,

c({2, 3}) = 6.4,

c({1, 2, 3}) = 9.1.

Here, we choose two coalitions as S = {1, 2} and T = {1, 3},
and then from the above example, we have:

c({1, 2}) + c({1, 3}) = 10.8 ≤ c({1, 2, 3}) + c({1}) = 12.3,

which violates the definition of convex game given in (4).
Therefore, our cooperative game is nonconvex.

E PROOF OF THEOREM 5.3

Our proof is similar to [44, 45] which focus on different ag-
gregation problems. Here we only give a sketch of the proof
process. The basic idea is that we could also use the non-
cooperative game theory to model the same problem by al-
lowing power exchange within datacenters as well, and our
proposed allocation method can find the Nash equilibrium of
the formulated noncooperative game. Since the core of our
cooperative game can be shown to be the same as the Nash
equilibrium of the corresponding noncooperative game, our
proposed cost allocation scheme is guaranteed to find the
core of the cooperative game. Details about the proof pro-
cess can be found in [44, 45].
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