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Abstract—Mobile edge computing (MEC) is an emerging
technology to support resource-intensive yet delay-sensitive appli-
cations using small cloud-computing platforms deployed at the
mobile network edges. However, the existing MEC techniques
are not applicable to the situation where the number of mobile
users increases explosively or the network facilities are spar-
ely distributed. In view of this insufficiency, unmanned aerial
vehicles (UAVs) have been employed to improve the connectiv-
ity of ground Internet of Things (IoT) devices due to their high
altitude. This article proposes an innovative UAV-enabled MEC
system involving the interactions among IoT devices, UAV, and
edge clouds (ECs). The system deploys and operates a UAV prop-
erly to facilitate the MEC service provisioning to a set of IoT
devices in regions where the existing ECs cannot be accessible
to IoT devices due to terrestrial signal blockage or shadowing.
The UAV and ECs in the system collaboratively provide MEC
services to the IoT devices. For optimal service provisioning in
this system, we formulate an optimization problem aiming at min-
imizing the weighted sum of the service delay of all IoT devices
and UAV energy consumption by jointly optimizing UAV posi-
tion, communication and computing resource allocation, and task
splitting decisions. However, the resulting optimization problem is
highly nonconvex and thus, difficult to solve optimally. To tackle
this problem, we develop an efficient algorithm based on the
successive convex approximation to obtain suboptimal solutions.
Numerical experiments demonstrate that our proposed collabo-
rative UAV-EC offloading scheme largely outperforms baseline
schemes that solely rely on UAV or ECs for MEC in IoT.

Index Terms—Mobile edge computing (MEC), resource man-
agement, successive convex approximation, unmanned aerial
vehicles (UAVs).

I. INTRODUCTION

AS THE number of wireless connected devices contin-
ues to grow vastly and rapidly, an enormous amounts
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of data are collected from these devices at an exponential
rate [1] and need to be transported from place to place for
intelligent decision making, which has generated tremendous
burden on our wireless communication infrastructure with the
limited radio spectrum. It is estimated that 25 billion Internet
of Things (IoT) devices will be in use by 2025 [2], and such
multitudes of wireless connected devices are enabling many
compelling new applications, such as real-time video analyt-
ics [3], [4], augmented/virtual reality [5], and smart cities [6],
which are computation intensive and delay sensitive and rely
on our ability to quickly process the data and extract use-
ful information, precluding the traditional cloud-based data
processing paradigm [7].
Mobile edge computing (MEC), in which computing and

storage resources are placed at the mobile network edges
(e.g., cellular base stations or WiFi access points) [8]–[10],
has emerged as a prospective solution to resolve the network
latency issue by pushing the frontier of data and services away
from centralized cloud to the edge of the network, thereby
enabling data analytics and functional operation in the prox-
imity to the data sources. By moving resources to the network
edge, close to where the data are being generated and acted
upon, MEC can bring many benefits to users, such as lower
service latency, reduced network congestion, and better ser-
vice quality. Meanwhile, resource management becomes a key
problem in MEC due to the much limited resources compared
to remote clouds and the tight coupling of communication
and computing. There has been substantial research on MEC
resource management with the goal of optimizing system
latency [11]–[14], energy consumption [15]–[17], and overall
cost of system latency and/or energy consumption [18]–[21].
However, all of these studies assume wired or dedicated wire-
less connections with sufficient bandwidth among distributed
edge resources deployed in a fixed fashion. Particularly, the
existing MEC techniques are not applicable to the situation
where the number of mobile users (MUs) increases explo-
sively or the network facilities are sparely distributed [22].
In view of this insufficiency, wireless networks enabled by
unmanned aerial vehicles (UAVs) have recently been proposed
as a promising solution to improve the connectivity of ground
IoT devices.
UAVs, especially, low-cost quadcopters, are undergoing an

explosive growth and a major regulation relaxation nowadays
and have been widely used in civilian domains, such as traffic
monitoring [23], public safety [24], search and rescue [25], and
reconnaissance over disaster rescue and recovery [26]. UAVs

2327-4662 c⃝ 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on August 11,2020 at 22:24:33 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-1761-2834
https://orcid.org/0000-0003-4874-8766
https://orcid.org/0000-0003-2241-125X


3148 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 4, APRIL 2020

not only provide extended coverage over wide geographical
areas but also possess unique characteristics like fast deploy-
ment, easy programmability, and high scalability. Various
payloads, such as IoT sensors (including cameras), miniatur-
ized base stations, and embedded computing modules can be
mounted on UAVs to enable different sensing, communica-
tion, and computing tasks [27], [28]. In particular, reliable and
cost-effective wireless communication solutions for multitudes
of real-world scenarios can be offered by UAVs if properly
deployed and operated [28]. UAVs can act as wireless relays or
aerial base stations for improving connectivity and extending
coverage of ground wireless devices since the high altitude of
UAV enables wireless devices to effectively establish line-of-
sight (LoS) communication links thus mitigating the potential
signal blockage and shadowing.
However, most prior works in the area of the UAV-enabled

wireless networks (e.g., [29]–[32]) ignore the computing
capability provided by UAVs and mainly focus on their
communication aspect, and only a very few recent stud-
ies [22], [33]–[36] start to consider computing with UAVs’
onboard resources. Hu et al. [22], Jeong et al. [33], and
Zhou et al. [34] only considered communication and compu-
tation interactions between two types of entities where ground
MUs offload the tasks to UAV for computation. Asheralieva
and Niyato [35] proposed a game-theoretic and reinforce-
ment learning approach in investigating the cooperation among
UAVs and ground base stations. Hu et al. [36] studied a new
UAV-enabled MEC system with interactions among a UAV, a
set of ground user equipments, and an access point. To the best
of our knowledge, UAV-enabled MEC systems involving MUs,
UAVs, and edge clouds (ECs) with UAV-EC collaboration have
not been studied.
In this article, we envision an innovative UAV-enabled MEC

system where IoT devices offload computing tasks to ECs out-
side their communication range with the assistance of UAV,
which are endowed with computing capability, to take the ben-
efits of collaboration among UAV and ECs. Specifically, we
consider the regions where the terrestrial wireless communi-
cation between IoT devices and ground cellular base stations
or WiFi access points cannot be effectively established due to
signal blockage and shadowing. Therefore, a UAV is deployed
and operated to facilitate MEC service provisioning to a set
of stationary IoT devices in such regions. The IoT devices
perform some sensing tasks and need to process the gener-
ated data quickly. We assume that the sensing data analysis
is not performed locally due to limited onboard communi-
cation, computing, and storage (CCS) resources but we seek
to utilize those from the UAV and existing ground ECs. The
UAV, equipped with miniaturized base stations and embedded
computing modules, is placed properly to collect the gen-
erated sensing data from IoT devices and then, can further
forward the computation tasks to more resourceful ground
ECs nearby. We formulate the IoT task offloading process as
a nonconvex optimization problem aiming at minimizing the
weighted sum of the service delay of all IoT devices con-
sisting of task offloading delay and computation delay, and
UAV energy consumption consisting of transmission energy

and computation energy consumption, by jointly optimizing
the task splitting decisions, UAV placement, communication
bandwidth allocation, and computation resource allocation at
the UAV and ECs.
The above-formulated optimization problem is challeng-

ing to solve due to the nonconvex objective function and
constraints. To tackle that challenge, we implement an effi-
cient algorithm by means of successive convex approximation
[37], [38]. The basic idea of the proposed algorithm is to com-
pute a suboptimal solution of the original nonconvex problem
by solving a sequence of convex subproblems where the non-
convex objective function and constraints are replaced by
suitable convex approximants. We first convert the nonconvex
objective function and constraints into suitable convex approx-
imants by introducing the initial feasible solutions, while the
local first-order behavior of the original nonconvex problem is
preserved. Then, we iteratively compute the local optimum of
the resulting convex problem by updating the initial feasible
solutions until a stationary solution of the original nonconvex
problem is found. The convergence of the proposed algorithm
is guaranteed if the step-size rule and termination criterion are
properly chosen.
The main contributions of this article are summarized as

follows.
1) We propose a novel UAV-enabled MEC system where a

UAV is deployed to facilitate the provisioning of MEC
services to IoT devices that cannot directly access ECs
on the ground due to terrestrial signal blockage and
shadowing.

2) Considering the stringent quality-of-service requirement
of MEC services and the limited battery size of UAV,
we formulate the joint IoT task offloading and UAV
placement under the proposed system as an optimization
problem with the goal of minimizing the service delay
of IoT devices and maximizing the energy efficiency of
UAV.

3) Given the nonconvexity of the formulated optimization
problem, we reformulate it into tractable one using
successive convex approximation, and then develop an
efficient algorithm to find the suboptimal approximate
solutions to the problem.

4) We conduct extensive simulations to evaluate the
performance of our proposed collaborative UAV-EC
scheme. Numerical experiments demonstrate that our
proposed collaborative UAV-EC offloading scheme
largely outperforms baseline schemes that solely rely on
UAV or ECs for MEC in IoT.

The remainder of this article is organized as follows.
Related work is reviewed in Section II. In Section III,
we describe the system model and then formulate the
optimal IoT task offloading processes as a nonconvex
optimization problem. In Section IV, we reformulate the origi-
nal problem as an approximated convex optimization problem
and then solve it by means of successive convex approxima-
tion. The simulation results based on real-world traces are
presented in Section V. Finally, the conclusion is given in
Section VI.
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II. RELATED WORK

In this section, we review the prior works most rel-
evant to our article from two aspects: 1) resource
management in MEC and 2) UAV-enabled MEC
networks.

A. Resource Management in MEC

There is a rich literature on resource management in MEC
that aims at optimizing system latency [11]–[14], energy con-
sumption [15]–[17], and overall cost of system latency and/or
energy consumption [18]–[21]. The tradeoff problem is stud-
ied in [11] for computing networks with fog node cooperation
aiming at minimizing the response time of fog nodes under
a given power efficiency constraint. Xu et al. [12] stud-
ied the joint service caching and task offloading problem in
the dense network aiming at minimizing computation latency
while keeping the total computation energy consumption low.
Chen and Hao [13] investigated the MEC task offloading
problem in the software-defined ultradense network aiming
at minimizing the total task duration under energy budget
constraints. Ren et al. [14] investigated a joint communica-
tion and computation resource allocation problem under the
collaboration of cloud and edge computing for minimizing
the system delay of all mobile devices. Sardellitti et al. [15]
formulated the multicell MEC task offloading problem as a
joint optimization of radio and computation resources aiming
at minimizing the overall users’ energy consumption, while
meeting latency constraints. Zhang et al. [16] proposed an
energy-efficient offloading scheme for MEC in 5G heteroge-
neous networks by formulating the optimization problem with
the objective of minimizing the total system energy consump-
tion. You et al. [17] studied the resource allocation problem
for a multiuser MEC offloading system based on TDMA
and OFDMA with the objective to minimize the weighted
sum of mobile energy consumption. Chen et al. [18] for-
mulated a multiuser computation offloading game to study
the energy-delay tradeoff problem in a mobile-edge cloud
computing architecture. Chen et al. [19], [20] jointly opti-
mized the offloading decisions of all users and computing
access point and resource allocation aiming at minimiz-
ing the overall energy cost and the maximum delay among
all users. Zhang et al. [21] proposed a distributed joint
computation offloading and resource allocation optimization
scheme in heterogeneous networks with MEC to minimize
the overhead of local energy consumption and execution time
cost.
However, all of these studies assume wired or dedi-

cated wireless connections with sufficient bandwidth among
distributed edge resources deployed in a fixed fashion.
Particularly, the existing MEC techniques are not applicable to
the situation where the number of MUs increases explosively
or the network facilities are sparely distributed [22]. In view
of the above limitations, we propose to deploy and operate
a UAV to assist the IoT task offloading processes in a MEC
system where ECs cannot be accessible to IoT devices due to
terrestrial signal blockage and shadowing.

B. UAV-Enabled MEC Networks

Extensive research efforts have been made from the
academia to employ UAVs as different kinds of wireless
communication platforms [39]. For instance, UAVs equipped
with base stations can be flexibly deployed at specific areas
to provide reliable uplink and downlink communication for
ground users. They can also serve as the mobile relaying nodes
to connect two or more distant users [29], [30]. Moreover,
UAVs can assist with information dissemination or data col-
lection by flying over the specific areas [31], [32]. However,
prior works in the area of the UAV-enabled wireless networks
ignore the computing capability provided by UAVs and mainly
focus on their communication aspect, and only a very few
recent studies [22], [33]–[36] start to consider computing with
UAVs’ onboard resources. Hu et al. [22] investigated joint
offloading and trajectory design for a MEC system where
a UAV endowed with computing capability is deployed to
serve the task offloading of MUs, aiming at minimizing the
sum of the maximum delay among all the users in each
time slot. Jeong et al. [33] studied the joint optimization of
path planning and bit allocation for an MEC system where
a UAV-mounted cloudlet is deployed to provide offloading
opportunities to MUs, aiming at minimizing the mobile energy
consumption while satisfying the quality-of-service require-
ments of offloaded applications. Zhou et al. [34] formulated
the computation rate maximization problem under both par-
tial and binary task offloading schemes in a UAV-enabled
MEC wireless-powered system where the UAV can simulta-
neously transmit energy and perform computation. However,
these works only consider communication and computation
interactions between two types of entities where ground MUs
offload the tasks to UAV for computation. Besides, Asheralieva
and Niyato [35] presented a game-theoretic and reinforce-
ment learning framework to study the computation offloading
problem in UAV-enabled MEC networks with multiple service
providers where UAV-based privately owned base stations are
interacting with terrestrial privately owned and operator con-
trolled base stations. Hu et al. [36] considered a UAV-aided
MEC system where the cellular-connected UAV is served as
a mobile computing server as well as a relay to help the user
equipments complete their computing tasks or further offload
their tasks to the AP for computing.
To the best of our knowledge, UAV-enabled MEC systems

involving MUs, UAVs, and ECs have not been studied.
Different from [35] which focuses on the user’s perspective,
we optimize the UAV energy-efficiency and IoT task service
latency from the system operator’s perspective with UAV-EC
collaboration. Different from [36] which focuses on a single
EC, we consider the scenario where multiple ECs and the UAV
collaboratively provide MEC services to the IoT devices.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first introduce the system model for
the UAV-enabled MEC system. After that, we formulate an
optimization problem to model the optimal UAV-enabled IoT
task offloading process.
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Fig. 1. Illustration of an exemplary UAV-enabled MEC system with N MUs,
J ECs, and a UAV.

A. System Model

In this article, we consider the UAV-enabled MEC system
as depicted in Fig. 1, which consists of a set of ground MUs1

i ∈ N = {1, 2, . . . ,N}, a UAV, and a set of ground ECs j ∈
J = {1, 2, . . . , J}. The UAV is deployed to facilitate the MEC
service provisioning for ground MUs who cannot establish
wireless communication with nearby cellular base stations or
WiFi access points due to signal blockage and shadowing. In
this scenario, ground-to-air (G2A) uplink communication is
from MUs to the UAV while air-to-ground (A2G) downlink
communication is from the UAV to ECs, which form a 3-D
wireless communication network. For ease of reference, we
list important notations in Table I.
We assume that the UAV is equipped with certain CCS

resources but subject to the size, weight, and power (SWAP)
limitations. The ECs are composed of ground MEC servers co-
located with cellular base stations or WiFi access points that
have more CCS resources compared to the UAV and MUs.
Each MU i has periodical computation-intensive tasks to per-
form, which are modeled as a triplet Wi = ⟨Li,Ci, λi⟩, where
Li (in bits) denotes the input data size for processing the task,
Ci (in CPU cycles/bit) denotes the number of CPU cycles
required to process 1-bit of task data, and λi (in unit of #task
per second) denotes the arrival rate of tasks.
In this article, we use the 3-D Cartesian coordinate system

to represent the locations of MUs, UAV, and ECs. The posi-
tion of the UAV is denoted by QUAV = (xUAV, yUAV,H),
where the height H is assumed to be fixed while the hor-
izontal coordinates xUAV and yUAV affect the channel gain
during data communication processes and need to be opti-
mized in our problem. Besides, we assume the positions of
MU i and EC j are fixed in our model, which are denoted as
QMU
i = (xMU

i , yMU
i , 0) and QEC

j = (xECj , yECj , 0), respectively.
1) Communication Model: In the UAV-enabled network,

the LoS links are much more dominant than other channel
impairments, such as shadowing or small-scale fading due to
the high altitude of the UAV. Therefore, the uplink channel

1Note that we use mobile users and IoT devices interchangeably in this
article.

TABLE I
LIST OF NOTATIONS

gain from MU i to the UAV can be described by the free-space
path loss model

hULi ! α0
(
dULi

)−2 = α0
∥∥QMU

i − QUAV
∥∥2

(1)

where α0 represents the received power at the reference dis-
tance of 1 m for a transmission power of 1 W, dULi denotes the
uplink distance from MU i to the UAV, and ∥·∥ denotes the
Euclidean norm of a vector. Similarly, the downlink channel
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gain from the UAV to EC j can be described as

hDLj ! α0

(
dDLj

)−2
= α0

∥∥∥QUAV − QEC
j

∥∥∥
2 (2)

where dDLj denotes the downlink distance from the UAV to
the EC j.
We assume the FDMA protocol for bandwidth sharing

among MUs during the task offloading process. According to
Shannon’s capacity, the achievable uplink transmission data
rate (in bps) from MU i to the UAV can be expressed as

RUL
i = BUL

i log2

(

1+ hULi PMU
i

σ 2

)

(3)

where BUL
i , PMU

i , and σ 2 represent the assigned bandwidth to
MU i, transmit power of MU i, and the noise power at the
UAV, respectively. For simplicity, we assume the noise power
is the same at UAV and ECs [29]. However, it can be easily
extended to the case when they are different. Similarly, the
downlink transmission data rate (in bps) from the UAV to EC
j can be computed as

RDL
j = BDL

j log2

(

1+
hDLj PUAV

TX

σ 2

)

(4)

where BDL
j and PUAV

TX represent the per-device bandwidth2 pre-
assigned to EC j and transmit power of the UAV, respectively.
2) Delay Analysis: In our model, we assume that MUs do

not perform local computing due to their limited computation
capacities. In contrast, tasks will be first offloaded to the UAV,
and then, the UAV will determine the portion of tasks that are
processed locally or further offloaded to ECs on the ground.
Note that the decision time to split a task is very short com-
pared to the entire communication and computation latency,
and therefore, can be neglected. Besides, the output data size
of the computation results is often very small compared to the
input data size in many computation-intensive applications,
such as face recognition and video analysis. Thus, the time
needed to send the computation results back to MUs can be
ignored as well.
In what follows, we will describe the four key components

of the total delay for the offloading process: 1) G2A uplink
transmission delay from MUs to the UAV; 2) computation
delay at the UAV; 3) A2G downlink transmission delay from
the UAV to the ECs; and 4) computation delay at the ECs.
G2A Uplink Transmission Delay From MUs to the UAV: As

mentioned before, all the tasks will be offloaded to the UAV
first via G2A links without any local computation. Therefore,
the G2A transmission delay from MU i to the UAV is com-
puted as the ratio of task input data size and the associated
uplink transmission data rate

tG2Ai = Li
RUL
i

. (5)

Computation Delay at the UAV: The UAV will decide the
portion of the received tasks that will be processed locally at

2We assume that each MU is assigned a certain bandwidth beforehand
when they communicate with ECs via the UAV.

the UAV or further offloaded to the ground ECs for processing.
Denote {βij ∈ [0, 1], i ∈ N , j ∈ J } and {βi0 ∈ [0, 1], i ∈ N }
as the portion of received tasks from MU i to be processed at
EC j and the UAV, respectively. Then, the computation delay
at the UAV side to process the offloaded tasks from MU i can
be calculated as

tUAVi = βi0LiCi

fUAVi

(6)

where fUAVi (in CPU cycles/s) is the computation resource that
the UAV allocates to MU i. Note that when βi0 equals 0, it
means that no computation will be executed at the UAV side
while when βi0 equals 1, it indicates that no further offloading
will occur from the UAV to ECs.
A2G Downlink Transmission Delay From the UAV to ECs:

The UAV may further offload the tasks to more powerful ECs
on the ground to reduce the computation latency. Then, the
A2G transmission delay from the MU i to EC j via UAV is
described as the ratio of offloaded task input data size and the
associated downlink transmission data rate

tA2Gij = βijLi
RDL
j

. (7)

Computation Delay at ECs: After receiving the offloaded
task data from the UAV, ECs can start the computation process.
Therefore, the computation delay at the EC side to process the
offloaded task from the MU i to EC j via UAV is

tECij = βijLiCi

f ECij

(8)

where f ECij (in CPU cycles/s) is the computation resource that
EC j allocates to MU i.
3) UAV Energy Consumption Analysis: To ensure service

availability, it is important to manage the energy consumption
of the UAV due to its limited battery size. In this article, we
focus on computation and transmission energy consumption of
UAV, and ignore the hovering power since it is independent
of our decisions.
Computation Energy Consumption: Similar to [40], we

model the power consumption of the CPU in UAV as
κ(fUAVi )3, where κ denotes the effective switched capacitance
depending on the CPU architecture. It follows that the corre-
sponding energy consumption of UAV when processing tasks
offloaded from MU i is given by the product of the power
level and computation time

ECP
i = κ

(
fUAVi

)3
tUAVi = κβi0LiCi

(
fUAVi

)2
. (9)

Transmission Energy Consumption: The transmission
energy consumption of the UAV when receiving the task input
data via the G2A uplink transmission channels from MU i is
given by

ERX
i = PUAV

RX tG2Ai = LiPUAV
RX

RUL
i

(10)

where PUAV
RX is the receiving power of UAV. Besides, the trans-

mission energy consumption of the UAV when offloading the
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task input data of MU i via the A2G downlink transmission
channels to EC j is given by

ETX
ij = PUAV

TX tA2Gij = βijLiPUAV
TX

RDL
j

. (11)

Therefore, the total energy consumption of the UAV when
serving the task offloading and computation of MU i is
given by

EUAV
i = λi

⎛

⎝ECP
i + ERX

i +
∑

j∈J
ETX
ij

⎞

⎠. (12)

B. Problem Formulation

In this article, we are interested in minimizing the total
energy consumption of the UAV when serving the computa-
tion and communication needs of the MUs and the total service
delay of all MUs. To define the service delay of each MU, we
make the following assumptions: 1) the UAV cannot partition
a task until receiving its entire input data to ensure the accu-
racy of task splitting; 2) the UAV and ECs cannot start the
processing of tasks until the end of the transmission between
MUs and the UAV or the UAV and ECs to ensure the reliabil-
ity of the computation results; and 3) the computation at the
UAV can proceed simultaneously with the transmission of the
tasks to each EC since the communication and computation
modules are often separated at the UAV. Based on the above
assumptions, the service delay of MU i can be represented as

Ti = tG2Ai +max
j∈J

{
tUAVi , tA2Gij + tECij

}
. (13)

Our problem becomes jointly optimizing the UAV position
QUAV, G2A uplink communication resource allocation BUL

i ,
task partition variables βi0 and βij, and computation resource
allocation of the UAV fUAVi and ECs f ECij with the goal of
minimizing the weighted sum of total energy consumption of
UAV and total service delay of all MUs. It can be formulated
as the following optimization problem:

min
QUAV,BULi ,βi0,

βij,fUAVi ,f ECij

∑

i∈N
EUAV
i + ρ

∑

i∈N
Ti (14a)

s.t.
∑

i∈N
BUL
i ≤ BUL (14b)

βi0 +
∑

j∈J
βij = 1 ∀i (14c)

∑

i∈N
fUAVi ≤ FUAV (14d)

∑

i∈N
f ECij ≤ FEC

j ∀j (14e)

0 ≤ βij ≤ 1 ∀i, j (14f)

0 ≤ βi0 ≤ 1 ∀i (14g)

BUL
i , fUAVi ≥ 0 ∀i (14h)

f ECij ≥ 0 ∀i, j (14i)

where ρ > 0 is a parameter defining the relative weight of
energy and delay, (14b), (14d), (14e), (14h), and (14i) ensure

that the allocated resources for uplink bandwidth, UAV and EC
CPU frequencies are nonnegative and no more than their limits
while (14c), (14f), and (14g) constrain that the offloading tasks
of MUs are completely processed by UAV and ECs, and the
values of partition variables are between 0 and 1.

IV. SOLUTION METHODOLOGY

Problem (14) is hard to solve due to the nonconvexity of
the objective function and constraints. In what follows, we
will first linearize the maximum term in (13) by leveraging
auxiliary variables and reformulate the original optimization
problem into a tractable one. Then, we develop an SCA-based
algorithm to transform the nonconvex objective function and
constraints into suitable convex approximants to iteratively
solve the resulting optimization problem.

A. Problem Reformulation

We first define an auxiliary variable for each MU i as zi !
maxj∈J {tUAVi , tA2Gij +tECij }. Then, we linearize the service delay
term in (14a) using zi and reformulate the original optimization
problem into the following:

min
zi,QUAV,BULi ,

βi0,βij,fUAVi ,f ECij

∑

i∈N
EUAV
i + ρ

∑

i∈N
(tG2Ai + zi) (15a)

s.t. zi ≥ tUAVi ∀i (15b)

zi ≥ tA2Gij + tECij ∀i, j (15c)

(14b)−(14i). (15d)

However, the reformulated optimization problem is still dif-
ficult to solve due to the nonconvex objective function (15a)
and nonconvex constraints (15b) and (15c). Note that both
the uplink and downlink transmission data rate functions (3)
and (4) are nonconvex with respect to the UAV position QUAV.

B. Successive Convex Approximation

In this section, we will show how to build the convex
approximation for the nonconvex objective function and non-
convex constraints in the reformulated problem (15) while
preserving the local first-order behavior of the original non-
convex problem and solve the resulting problem iteratively
to obtain suboptimal solutions by means of SCA. Before
we develop the SCA-based algorithm, we first present the
background of SCA.
1) Background of SCA: Consider the following

optimization problem:

P: min
x

U(x) (16a)

s.t. gl(x) ≤ 0 ∀l = 1, . . . ,m (16b)

x ∈ K (16c)

where the objective function U : K → R is smooth (possibly
nonconvex) and gl : K → R is smooth (possibly nonconvex),
for all l = 1, . . . ,m; the feasible set is denoted as X . A widely
used method for solving this specific problem is SCA (also
known as majorization minimization) where at each iteration,
a convex approximation of the original problem is solved via
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Algorithm 1 SCA Algorithm for Problem P
Find a feasible solution x ∈ X in P , choose a step size θ ∈
(0, 1] and set k = 0.
Repeat
1) Compute x̂(xk), the solution of Pxk ;
2) Set xk+1 = xk + θ(x̂(xk) − xk);
3) Set k ← k + 1.

Until some convergence criterion is met.

replacing the nonconvex objective function and constraints by
suitable convex approximants. The convex approximation of
the original problem can be stated as follows: given xk ∈ X

Pxk : min
x

Ũ
(
x; xk

)
(17a)

s.t. g̃l(x; xk) ≤ 0 ∀l = 1, . . . ,m (17b)

x ∈ K (17c)

where Ũ(x; xk) and g̃l(x; xk) represent the approximants of
U(x) and gl(x) at current iterate xk, respectively; the feasi-
ble set is denoted as X (xk). More specifically, we consider
the SCA method presented in Algorithm 1. It is assumed that
at each iteration, some original functions U(x) and gl(x) are
approximated by their upper bounds where the same first-order
behavior is preserved [41].
2) SCA-Based Algorithm: Scutari et al. [38] proposed a

framework that unifies several existing SCA-based algorithms
to solve the problem P in a parallel and distributed fashion. It
also offers much flexibility in the choice of the convex approx-
imation functions, and the objective function U need not be an
upper bound of itself at any feasible point. Multiple examples
are summarized to find the candidate approximants g̃l(x) and
Ũ(x) while necessary assumptions are satisfied to develop the
SCA-based algorithm. We first present the assumptions and
examples that we will utilize to approximate the nonconvex
terms in our problem as follows.
Assumption 1: The key assumptions on the choice of the

approximated function g̃l : K ×X → R are given as follows.
A1) g̃l(•; y) is convex on K for all y ∈ X .
A2) Upper Bound: gl(x) ≤ g̃l(x; y) ∀x ∈ K, y ∈ X .
A3) Function Value Consistency: g̃l(y; y) = gl(y), for all

y ∈ X .
A4) g̃l(•; •) is continuous on K × X .
A5) ∇xg̃l(•; •) is continuous on K × X .
A6) Gradient Consistency: ∇xg̃l(y; y) = ∇xgl(y), for all

y ∈ X , where ∇xg̃l(y; y) denotes the partial gradient of
the function g̃l with respect to the argument x evaluated
at (y; y).

Assumption 2: The key assumptions on the choice of the
approximated function Ũ : K×X → R are given as follows.
B1) Ũ(•; y) is uniformly strongly convex on K with con-

stant µ > 0, i.e., for all x, z ∈ K and y ∈ X :

(x − z)⊤
(
∇xŨ(x; y) − ∇xŨ(z; y)

)
≥ µ∥x − z∥2.

B2) Gradient Consistency: ∇xŨ(y; y) = ∇xU(y), for all
y ∈ X .

B3) ∇xŨ(•; •) is continuous on K × X , where ∇xŨ(u; v)
denotes the partial gradient of the function Ũ with

respect to the argument x evaluated at (u; v). Note that
A1) and B1) make the problem Pxk strongly convex
while A2) and A3) guarantee the iterate feasibility that
xk ∈ X (xk) ⊆ X .

Example 1 (Approximation of gl(x) [38, Example 3]):
Suppose that gl has a difference of convex (DC) structure,
i.e., gl(x) = g+j (x) − g−

j (x) with both g+l and g−
l being con-

vex and continuously differentiable. By linearizing the concave
part g−

l , we obtain the convex upper approximation of gl as
follows: for all x ∈ K and y ∈ X ,

g̃l(x; y) ! g+l (x) − g−
l (y) − ∇xg−

l (y)
⊤(x − y) ≥ gj(x). (18)

Example 2 (Approximation of gl(x) [38, Example 4]):
Suppose that gl(x) has a product of functions (PF) structure,
i.e., gl(x) = f1(x)f2(x) with both f1 and f2 being convex and
nonnegative. Observe that gl(x) can be rewritten as a function
with the DC structure

gl(x) =
1
2
(f1(x)+ f2(x))2 − 1

2

(
f 21 (x)+ f 22 (x)

)
. (19)

Then, the convex upper approximation of gl can be obtained
by linearizing the concave part in (19): for any y ∈ X

g̃l(x; y) ! 1
2
(f1(x)+ f2(x))2 − 1

2

(
f 21 (y)+ f 22 (y)

)

− f1(y)f ′1(y)(x − y) − f2(y)f ′2(y)(x − y) ≥ gl(x).
(20)

Example 3 (Approximation of U(x) [38, Example 8]):
Suppose that U(x) has a PF structure, i.e., U(x) =
h1(x)h2(x) with both h1 and h2 being convex and nonneg-
ative. For any y ∈ X , a convex approximation of U(x) is
given by

Ũ(x; y) = h1(x)h2(y)+ h1(y)h2(x)

+ τ

2
(x − y)⊤H(y)(x − y) (21)

where τ > 0 is a positive constant, and H(y) is a uniformly
positive-definite matrix.
Then, we transform the nonconvex constraints and noncon-

vex objective function in the reformulated problem (15) into
suitable approximants by following the above examples. For
constraint (15b), we observe that the nonconvex term tUAVi
can be written as the product of convex and nonnegative
functions3

tUAVi = LiCigl
(
βi0, fUAVi

)
= LiCif1(βi0)f2

(
fUAVi

)
(22)

where f1(βi0) = βi0 and f2(fUAVi ) = 1/fUAVi . Then, given
a feasible solution βi0(k) and fUAVi (k) for the kth iteration
of the SCA-based algorithm, we derive a convex upper
approximation of tUAVi by using Example 2 as

tUAVi ≤ t̃UAVi

(
βi0, fUAVi ;βi0(k), fUAVi (k)

)

! LiCi

⎡

⎣1
2

⎛

⎝
(

βi0+
1

fUAVi

)2

−(βi0(k))2−
(

1

fUAVi (k)

)2
⎞

⎠

3Without loss of generality, we factorize the constants (Li, Ci, etc.) out of
the term since they will not affect the convexity.
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− (βi0(k)(βi0 − βi0(k)))

+
(

1

fUAVi (k)

)3(
1

fUAVi

− 1

fUAVi (k)

)⎤

⎦. (23)

For constraint (15c), tA2Gij can be written as the product
of Li, βij, and 1/RDL

j . However, 1/RDL
j is a nonconvex func-

tion with respect to the UAV location QUAV, and therefore,
Example 2 cannot be directly applied to derive a convex upper
approximation. To tackle the nonconvexity, we replace it by
nonnegative auxiliary variables {φj}j∈J . Then, the noncon-
vex term tA2Gij can be written as the product of convex and
nonnegative functions

tA2Gij = Ligl
(
βij,φj

)
= Lif1

(
βij

)
f2

(
φj

)
(24)

where f1(βij) = βij and f2(φj) = 1/φj in (24). Similarly, the
nonconvex term tECij in (15c) can be written as the product of
convex and nonnegative functions

tECij = LiCigl
(
βij, f ECij

)
= LiCif1

(
βij

)
f2

(
f ECij

)
(25)

where f1(βij) = βij and f2(f ECij ) = 1/f ECij in (25). Then,
given a feasible solution βij(k), φj(k), and f ECij (k) for the kth
iteration of the SCA-based algorithm, we derive convex upper
approximation of tA2Gij and tECij by using Example 2 as

tA2Gij ≤ t̃A2Gij
(
βij,φj;βij(k),φj(k)

)

! Li

[
1
2

((
βij +

1
φj

)2

− (βij(k))2 −
(

1
φj(k)

)2
)

− (βij(k)(βij − βij(k)))+
(

1
φj(k)

)3(1
φj

− 1
φj(k)

)]

(26)

and

tECij ≤ t̃ECij
(
βij, f ECij ;βij(k), f ECij (k)

)

! LiCi

⎡

⎣1
2

⎛

⎝
(

βij +
1

f ECij

)2

− (βij(k))2 −
(

1

f ECij (k)

)2
⎞

⎠

−
(
βij(k)

(
βij − βij(k)

))

+
(

1

f ECij (k)

)3(
1

f ECij

− 1

f ECij (k)

)⎤

⎦. (27)

By defining RUL
i ! log2(1+ [(hULi PMU

i )/(σ 2)]), we replace
1/RUL

i in tG2Ai by nonnegative auxiliary variables {γi}i∈N since
it is a nonconvex function with respect to the UAV location
QUAV. Then, the nonconvex terms in objective function (15a)
can be written as the product of convex and nonnegative
functions

ECP
i = κLiCih1(βi0)h2

(
fUAVi

)
(28)

ETX
ij = LiPUAV

TX h1
(
βij

)
h3(φj) (29)

tG2Ai = Lih3(BUL
i )h3(γi) (30)

ERX
i = PUAV

RX tG2Ai = PUAV
RX Lih3(BUL

i )h3(γi) (31)

where h1(βi0) = βi0 and h2(fUAVi ) = (fUAVi )2 in (28), and
h1(βij) = βij and h3(φj) = 1/φj in (29), while h3(BUL

i ) =
1/BUL

i and h3(γi) = 1/γi in (30). Then, given a feasible solu-
tion βi0(k), βij(k), φj(k), γi(k), BUL

i (k), and fUAVi (k) for the kth
iteration of SCA-based algorithm, we derive convex approx-
imation of ECP

i , ETX
ij , tG2Ai , and ERX

i by using Example 3
as

ẼCP
i

(
βi0, fUAVi ;βi0(k), fUAVi (k)

)

! κLiCi

(
βi0

(
fUAVi (k)

)2
+ βi0(k)

(
fUAVi

)2)

+ τβi0

2
(βi0 − βi0(k))2 +

τfUAVi

2

(
fUAVi − fUAVi (k)

)2
(32)

ẼTX
ij

(
βij,φj;βij(k),φj(k)

)
! LiPUAV

TX

(
βij

φj(k)
+ βij(k)

φj

)

+ τβij

2

(
βij − βij(k)

)2 + τφj

2

(
φj − φj(k)

)2 (33)

t̃G2Ai
(
BUL
i , γi;BUL

i (k), γi(k)
)

! Li

(
1

BUL
i γi(k)

+ 1

BUL
i (k)γi

)

+
τBULi
2

(
BUL
i − BUL

i (k)
)2 + τγi

2
(γi − γi(k))2 (34)

and

ẼRX
i

(
BUL
i , γi;BUL

i (k), γi(k)
)

! PUAV
RX t̃G2Ai

(
BUL
i , γi;BUL

i (k), γi(k)
)

(35)

where τβi0 , τβij , τφj , τγi , τBULi
, τfUAVi

> 0. Therefore, the convex
surrogate objective function of (15a) can be denoted as the
nonnegative weighted sum of convex functions

∑

i∈N
λi

⎛

⎝ ẼCP
i + ẼRX

i +
∑

j∈J
ẼTX
ij

⎞

⎠+ ρ
∑

i∈N

(
t̃G2Ai + zi

)
(36)

where the convexity is preserved.
Moreover, as we replace the nonconvex data rate functions

in both objective function and constraints by the auxil-
iary variables {φj}j∈J and {γi}i∈N , we obtain equality con-
straints {φj}j∈J = 1/RDL

j and {γi}i∈N = 1/RUL
i . To further

address the nonconvexity, we first relax them as the following
inequalities:

0 ≤ φj ≤ RDL
j ∀j (37)

0 ≤ γi ≤ RUL
i ∀i (38)

where the optimality is preserved since at optimal solutions the
auxiliary variables will equate their upper bounds. The key
observation is that in (37) and (38), although RDL

j and RUL
i

are not concave with respect to QUAV, they are convex func-

tions with respect to
∥∥∥QUAV − QEC

j

∥∥∥
2
and

∥∥QMU
i − QUAV

∥∥2,
respectively. Recall that any convex function is globally
lower bounded by its first-order Taylor expansion at any
point [42]. Therefore, by taking the first-order Taylor expan-

sion of RDL
j and RUL

i with respect to
∥∥∥QUAV − QEC

j

∥∥∥
2
and

∥∥QMU
i − QUAV

∥∥2, respectively, we obtain lower bounds of RDL
j

and RUL
i at local point QUAV(k) for the kth iteration of the
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SCA-based algorithm as follows:

RDL
j ≥ RDL

j,LB

(
QUAV;QUAV(k)

)
! RDL

j

(
QUAV(k)

)

−
BDL
j η

(∥∥∥QUAV−QEC
j

∥∥∥
2
−

∥∥∥QUAV(k)−QEC
j

∥∥∥
2
)

ln 2
(∥∥∥QUAV(k) − QEC

j

∥∥∥
2
)(

η +
∥∥∥QUAV(k)−QEC

j

∥∥∥
2
) ∀j

and (39)

RUL
i ≥ RUL

i,LB

(
QUAV;QUAV(k)

)
! RUL

i

(
QUAV(k)

)

−
εi

(∥∥QMU
i − QUAV

∥∥2 −
∥∥QMU

i − QUAV(k)
∥∥2

)

ln 2
(∥∥QMU

i − QUAV(k)
∥∥2

)(
εi +

∥∥QMU
i − QUAV(k)

∥∥2
) ∀i

(40)

where η ! α0PUAV
TX /σ 2 and εi ! α0PMU

i /σ 2. Note that both
RDL
j,LB and RUL

i,LB are concave functions with respect to QUAV.

Then, by replacing RDL
j and RUL

i with their lower bounds, we
obtain the approximated convex constraints as

0 ≤ φj ≤ RDL
j,LB

(
QUAV;QUAV(k)

)
∀j (41)

0 ≤ γi ≤ RUL
i,LB

(
QUAV;QUAV(k)

)
∀i. (42)

Finally, we denote the set of decision vari-
ables for our optimization problem as ψ =
(zi,QUAV,BUL

i ,βi0,βij, fUAVi , f ECij ,φj, γi). The convex
approximation of the reformulated problem (15) with a
feasible solution ψ(k) for the kth iteration of the SCA-based
algorithm is given by

min
ψ

∑

i∈N
λi

⎛

⎝ ẼCP
i (ψ;ψ(k))+ ẼRX

i (ψ;ψ(k))

+
∑

j∈J
ẼTX
ij (ψ;ψ(k))

⎞

⎠

+ ρ
∑

i∈N
(t̃G2Ai (ψ;ψ(k))+ zi) (43a)

s.t. zi ≥ t̃UAVi (ψ;ψ(k)) ∀i (43b)

zi ≥ t̃A2Gij (ψ;ψ(k))+ t̃ECij (ψ;ψ(k)) ∀i, j (43c)

0 ≤ φj ≤ RDL
j,LB(ψ;ψ(k)) ∀j (43d)

0 ≤ γi ≤ RUL
i,LB(ψ;ψ(k)) ∀i (43e)

(14b)−(14i) (43f)

which has a unique solution denoted by ψ̂(ψ(k)). The above
optimization problem (43) is convex, and the SCA-based
algorithm is summarized in Algorithm 2.
Note that a diminishing step-size rule is applied in step 2),

which is numerically more efficient than a constant one. The
convergence of Algorithm 1 is guaranteed if the step size θ(k)
is chosen so that θ(k) ∈ (0, 1], θ(k) → 0, and

∑
v θ(k) = ∞,

then ψ(k) is bounded and at least one of its limit points
is stationary [38]. For the termination criterion, it is very
convenient to use ∥ψ̂(ψ(k)) − ψ(k)∥, which is a measure
of stationarity. Thus, a reliable termination rule is to check
∥ψ̂(ψ(k)) − ψ(k)∥ ≤ ζ , where ζ is the desired accuracy.

Algorithm 2 SCA-Based Algorithm for Problem (43)

Input: ψ(0) = (zi,QUAV(0),BUL
i (0),βi0(0),βij(0),

fUAVi (0), f ECij (0),φj(0), γi(0)), and τβi0 , τβij , τφj , τγi , τBULi
,

τfUAVi
> 0 for i ∈ N and j ∈ J , θ(k) ∈ (0, 1]. Set k = 0,

α = 0.5.
Repeat
1) Compute ψ̂(ψ(k)), the solution of (43);
2) Set ψ(k + 1) = ψ(k) + θ(k)(ψ̂(ψ(k)) − ψ(k)), with

θ(k) = θ(k − 1)(1 − αθ(k));
3) Set k ← k + 1.

Until ψ(k) is a stationary solution of (14).
Output: QUAV, BUL

i , βi0, βij, fUAVi and f ECij .

Fig. 2. Locations of 10 MUs and 4 ECs in the MEC system.

TABLE II
SIMULATION PARAMETERS

V. NUMERICAL EXPERIMENTS

In this section, we validate the effectiveness of our proposed
SCA-based algorithm via extensive numerical experiments.
All the experiments are implemented in MATLAB R2018a
using CVX on a desktop computer with an Intel Core i7-4790
3.60-GHz CPU and 16-GB RAM. The convergence tolerance
threshold ζ for the proposed algorithm is set to be 10−2.

A. Simulation Setup

We consider a UAV-enabled MEC system with 4 ground
ECs placed at each vertex and 10 ground MUs that are ran-
domly distributed within a 2-D area of 1000 × 1000 m2, as
illustrated in Fig. 2. The UAV is deployed and operated to
facilitate the MEC service provisioning, and the optimal 3-D
location of UAV can be found using our proposed SCA-based
algorithm. The simulation parameter settings are summarized
in Table II unless otherwise stated.
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As mentioned in Section I, our system settings involving the
interactions among IoT devices, UAV, and ECs are different
from prior works. The approaches proposed in their studies are
not directly applicable to our settings. Therefore, we consider
the following intuitive methods as baselines.
1) Random UAV Location Scheme: The task splitting and

resource allocation decisions are optimized while the
UAV location is randomly selected without optimization.

2) UAV-Only Scheme: All tasks are offloaded and processed
at the UAV without further offloading to any ECs.

3) EC-Only Scheme: All tasks are first offloaded to the
UAV without any computations and further offloaded to
ECs for processing.

4) Fixed UAV-EC Scheme: Half of the tasks is processed at
the UAV while the other half is processed at ECs.

Note that the UAV is deployed at the optimal position for
the last three baselines similar to our proposed method. To
investigate the importance of UAV location optimization, we
name our proposed method as optimized UAV location scheme
and compare it with the random UAV location scheme. To
study the benefits of utilizing computing capacity at both UAV
and ECs, we rename our proposed method as collaborative
UAV-EC scheme and compare it with the UAV-only, EC-only,
and fixed UAV-EC schemes.

B. Experimental Results

In this section, we first simulate and analyze how UAV
position and per-device bandwidth in the downlink communi-
cation will affect the system cost of the studied UAV-enabled
MEC system. Then, we compare the performances of our
proposed collaborative UAV-EC scheme with UAV-only, EC-
only, and fixed UAV-EC schemes to verify the effectiveness
of our method in reducing the overall system cost as well
as the benefits of UAV-EC collaboration. We set the simula-
tion parameters FEC

j (j = 1, 2, 3, 4) and Li (i = 1, 2, . . . , 10)
to be [8, 9, 6, 7] GHz and [3, 5, 2, 3, 5, 1, 1, 5, 4, 5] Mbits,
respectively.
1) Importance of Optimizing the UAV Position: In this part,

we compare the performances of our proposed optimized UAV
location scheme with the random UAV location scheme where
the location of UAV is randomly assigned without optimization
in terms of reducing the system cost. The results are summa-
rized in Table III. It is shown that under the optimized UAV
location scheme, the optimal 3-D position (xUAV∗ , yUAV∗ ,H)

found for the UAV is at (558.11, 724.52, 100) m. The system
cost of the optimized UAV location scheme is 20.83, which
is the best compared with randomly selected UAV locations
(at the center or near each EC), and our proposed scheme can
achieve high-cost saving as 13.39%. The rationale behind the
system cost difference is that for our proposed approach, the
UAV location is optimized to obtain better channel condition
when providing the offloading opportunities for ground MUs
while for the random UAV location scheme, the UAV loca-
tion is randomly assigned beforehand without optimization.
Besides, the optimal task splitting ratios of MUs for UAV and
ECs are shown in Fig. 3. We observe that for MUs 2, 5, 8, 9,
and 10 with large amount of input data size, 32.12% tasks in

TABLE III
SYSTEM COST COMPARISON FOR OPTIMIZED UAV LOCATION AND

RANDOM UAV LOCATION SCHEMES

Fig. 3. Optimal task splitting ratios of the UAV βi0 (i = 1, 2, . . . , 10) and
ECs βij (j = 1, 2, 3, 4) for MUs.

average are first processed at the UAV (i.e., βi0) to reduce the
data size, and then the remaining tasks are distributed to ECs
for further processing.
2) Impact of the Per-Device Bandwidth: In this part, we

first study how the per-device bandwidth will affect the optimal
task splitting ratios at ECs. As mentioned before, per-device
bandwidth is assigned to each MU beforehand, and it plays an
important role in affecting the optimal task splitting ratios at
ECs and system cost. To proceed, we increase the per-device
bandwidth BDL

1 assigned to EC1 from 0.5 to 5 MHz while the
other three BDL

2 , BDL
3 , and BDL

4 remain unchanged. In Fig. 4,
we observe that the optimal task splitting ratio β11 for MU1
at EC1 is increasing while the other three β12, β13, and β14
are decreasing. The reason is that as BDL

1 increases, the A2G
downlink transmission delay tA2G11 from the UAV to the EC1
can be reduced, and then, more tasks will be offloaded to EC1
for further processing and therefore, the corresponding optimal
task splitting ratio grows.
Next, we investigate how the per-device bandwidth will

affect the system cost. To proceed, we increase the per-device
bandwidth BDL

j assigned to the jth EC (j = 1, 2, 3, 4) from
0.5 to 5 MHz while the other three remain at 0.5 MHz. In
Fig. 5, we observe that the system cost reduces as the per-
device bandwidth assigned to the jth EC increases. The reason
is that as more bandwidth assigned to each MU when tasks
are offloaded from the UAV to the jth EC, higher downlink
transmission data rates can be achieved, and thus, the down-
link transmission delay and downlink transmission energy
consumption of the UAV can be reduced accordingly.
3) Benefits of UAV-EC Collaboration: In this part, we com-

pare the performances of our proposed collaborative UAV-EC
schemes with UAV-only, EC-only and fixed UAV-EC schemes
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Fig. 4. Optimal task splitting ratios at each EC for MU1 as a function of
per-device bandwidth BDL1 assigned to EC1.

Fig. 5. System cost as a function of per-device bandwidth BDLj assigned to
the jth EC (j = 1, 2, 3, 4) while fixing others at 0.5 MHz.

Fig. 6. System cost as a function of the UAV computation capacity FUAV

under four different offloading schemes.

in terms of reducing the system cost. Meanwhile, we inves-
tigate how system cost behaves as the UAV computation
capacity and UAV transmission power change, respectively.
First, we study how system cost behaves as the UAV compu-
tation capacity FUAV increases from 3 to 30 GHz. As described
in Fig. 6, the system cost of EC-only scheme does not change
as FUAV varies since this scheme prescribes that all MUs must
offload their tasks to ECs without any computations at the
UAV side. We further observe that for the other three offload-
ing schemes, all system cost decreases as FUAV increases since
more computation resources are available to reduce the task
computation delay at the UAV side. Then, we investigate how
system cost will be affected as the UAV transmission power
PUAV
TX increases from 1 to 10 W. As illustrated in Fig. 7, the

system cost of the UAV-only scheme remains constant as PUAV
TX

varies since this scheme indicates that all MUs must offload

Fig. 7. System cost as a function of the UAV transmission power PUAVTX
under four different offloading schemes.

their tasks to the UAV for execution without further offloading
to any ECs. We further observe that for the other three offload-
ing schemes, system cost increases as PUAV

TX increases since the
downlink transmission energy consumption of the UAV is an
increasing function of PUAV

TX . Under the above two scenarios,
we observe that our proposed approach largely outperforms
baseline schemes, such as UAV-only, EC-only, and fixed UAV-
EC offloading schemes in terms of reducing the system cost,
which verifies the benefits of UAV-EC collaboration in the task
offloading processes.

VI. CONCLUSION

In this article, we have studied an innovative UAV-enabled
MEC system involving the interactions among IoT devices,
UAV, and ECs. We have proposed to deploy a UAV prop-
erly to facilitate the MEC service provisioning to a set of
stationary IoT devices in regions where the existing ECs
cannot be accessible to IoT devices due to terrestrial signal
blockage and shadowing. The UAV and ECs in our system
collaboratively provide MEC services to the IoT devices using
aerial-to-ground communications. We have formulated a non-
convex optimization problem with the goal of minimizing the
weighted sum of the service delay of all IoT devices and
UAV energy consumption by jointly optimizing UAV posi-
tion, communication and computing resource allocation, and
task splitting decisions. We have developed an SCA-based
algorithm to tackle the nonconvexity of the original problem
by first transforming the original nonconvex problem into its
approximated convex form and then solve it efficiently. We
have also conducted numerical experiments to verify that our
proposed collaborative UAV-EC offloading scheme largely out-
performs baseline schemes that solely rely on UAV or ECs for
MEC in IoT. In the future, we will extend our work to the set-
ting of multiple UAVs and investigate the task offloading and
UAV swarm placement in the multihop MEC scenario.
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