
1536-1276 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2021.3069763, IEEE
Transactions on Wireless Communications

Data-Driven Caching with Users’ Content

Preference Privacy in Information-Centric Networks

Xinyue Zhang, Student Member, IEEE, Hongning Li, Member, IEEE, Jingyi Wang, Member, IEEE, Yuanxiong

Guo, Senior Member, IEEE, Qingqi Pei, Senior Member, IEEE, Pan Li, Senior Member, IEEE, and Miao

Pan, Senior Member, IEEE

Abstract—Information-centric networking (ICN) as an emerg-
ing networking paradigm has recently gained significant atten-
tion, due to the improvement of content delivery efficiency. The
built-in network storage for caching is a key component in
ICN to provide low latency service and reduce high backhaul
traffic by caching popular content. However, users’ content
preference contains individual sensitive characteristics which is
distinguishable from others. Therefore, in this work, we propose
a data-driven caching revenue maximization problem with the
considerations of users’ local differential privacy. Specifically, we
employ dBitFlip, a local differential privacy (LDP) mechanism,
to locally add differential private noise to the users’ preference
content information. We leverage data-driven approach to pre-
dict the content popularity based on the reference distribution
constructed by the reported noisy preference content data from
users, mathematically present the distance between the noisy
reference distribution and the true distribution by the tolerance
level, and prove the relationship among the tolerance level,
differential privacy budget and the confidence level. We provide
feasible solutions to the proposed revenue maximization problem,
and conduct simulations to show the effectiveness of the proposed
scheme.

Index Terms—Caching, local differential privacy, information-
centric networks, data-driven optimization

I. INTRODUCTION

As the rapid increasing of content demands in the Internet,

new information-centric networking (ICN) design is motivated

to be developed in the future Internet for improved delivery

efficiency, content scalability and availability [1]–[3]. In addi-

tion, ICN architectures are based on named content, which is
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radically different from the traditional host-centric paradigm

based on named hosts [1]. In this new ICN architecture, with

the deployment of in-network storage for caching in the access

points (AP), it is efficient to offload the tremendous increasing

amount of content. In 2017, Cisco highlights that the video

traffic has already reached 73 percent of all the Internet traffic

in 2016, and it is estimated to be increased to 82 percent

by 2021 [4]. Inspired by the fact of the speedy growth of

the demand for video content, build-in caching features are

supposed to be applied widely in the ICN.

Since the content provider (CP) aims to provide high quality

of service (QoS) to the users, the storage for caching in APs

plays an important role in reducing the network congestion

and backhaul load. As the cache-enabled APs such as base

stations are required to cooperate with the CP, it is necessary

to find an approach to offering the economic incentives for

the contributions and efficiently allocating the resources. As a

result, the CP is able to cache the popular data objects with the

cooperation of the cache-enabled APs by offering appreciable

economic incentives [5]. For example, in [6], the authors

exploit the auction theory to design the optimal allocation with

jointly leasing the cache storage and bandwidth of APs. In [7],

the proposed scheme focuses on optimal virtual resource allo-

cation with integrating device-to-device communication in the

ICN. However, in these works, they all use the Zipf discrete

distribution [8] to represent the content popularity in Internet.

In addition, content popularity may also vary over time [9].

In most cases, the true distribution is actually unknown and

we can only access to a set of historical data [10]. Moreover,

although the Zipf law can fit the frequency distribution, there

is always distance between the the Zipfian distribution and real

distribution [11]. Therefore, in our work, we employ data-

driven methodology to predict the content popularity from

the collected data of local CP users without premise on the

content popularity distribution. Such data-driven prediction

can facilitate advanced content caching schemes, such as [12],

and provide risk-averse decision making under uncertainty.

When deciding the caching strategy, CP will utilize the

users’ content preferences to provide high QoS, it may com-

promise the users’ privacy. To predict the content popularity,

the CP aggregates the preferred content information from

certain users. However, this aggregation process may elevate

risks of privacy leakage [13]. As the user’s content prefer-

ences may include some sensitive information, these kind of
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sensitive personal information could be sold as a commodity

for commercial uses [14], [15]. For example, because of the

disclosure of the private content preference data, users may

receive a plenty of spam or fraud emails or phone calls. There-

fore, it is necessary to pay attention on protecting on users’

private content preferences. For instance, in [16], the authors

propose a tag forgery based privacy-enhancing technology to

protect the users’ interests and preferences in social-tagging

systems. In [17], the authors proposed to perturb user’s content

preference with local differential privacy. In [18], the authors

design a tag suppression scheme based on data perturbation

to protect end-user privacy in collaborative tagging services.

In our work, in order to address those issues above, we

propose a scheme in which the CP offloads popular content

into several storage for caching of APs according to the

noisy content preference data from users. Therefore, the

users’ privacy is preserved and the problem of high backhaul

load is resolved. Briefly, on the users’ side, they first add

local differential private noise to their content preferences to

preserve the privacy. In other words, the users do not need to

trust any third party including the CP. On the CP’s side, the

CP exploits the data-driven methodology to predict the content

popularity distribution according to the collected noisy content

preference data from the users and stimulates the APs with

economic incentives to lease their storage for caching popular

content. Consequently, we formulate a revenue maximization

problem for the CP based on the description above and

demonstrate that the revenue can be effectively optimized,

while preserving the customers’ local differential privacy in

the ICN. Our salient contributions are summarized as follows.

• In our work, we preserve the privacy of users’ prefer-

ence information by locally adding differential noises

on the users’ side. Moreover, data-driven methodology

is employed to forecast the content popularity for op-

timizing the revenue maximization problem on the CP

side. Therefore, true preference content information of

each individual user is not able to be obtained by CP or

attackers like eavesdropper.

• With the assumption that the CP is semi-honest, in

order to protect each individual user’s content prefer-

ence information, a local differential private mechanism

called dBitFlip is exploited. Therefore, the CP is able to

estimate the frequency distribution of different content

from the users’ noisy content preference information,

meanwhile the true individual user’s content preference

information will not be leaked out.

• In the ICN, the Zipfs law is widely applied as a prob-

abilistic model to characterize the content popularity. In

our work, we employ data-driven approach to predict-

ing the content popularity of a group of users without

assumption of the distribution. We assume the CP con-

structs the noisy reference content popularity probability

P0 according to the noisy users’ content preferences,

stimulates the cache-enabled APs to cooperate in the ICN

to store popular content, and formulates the revenue max-

imization problem with the constraint of characteristic of

uncertainty of content popularity with distance between

TABLE I
NOTATION LIST

Symbol Definition

U Set of users

F Set of content

M Set of cache-enabled access points

cm Storage capacity of each access point

km Fixed price to lease each access point

ξf Possible realizations of each content

P0 Reference distribution of content popularity after

injecting differentially private noise

P Ambiguous true distribution of content popularity

ǫ DP privacy budget

D Confidence set

η Confidence level

dζ Distribution distance under ζ-structure probability metric

θ Tolerance level

Ω The sample space of ξ

∅ The dimension of Ω

ym Binary value to indicate whether an access point is leased

βf Fraction of content f cached in the access points

the ambiguous distribution P and the noisy reference

content popularity probability P0. We present and prove

the relationship among the tolerance level θ, confidence

level η and the local differential privacy level ǫ.
• The formulated revenue maximization problem can be

represented into a risk-averse two-stage stochastic prob-

lem (RA-SP). The Benders’ decomposition algorithm

is applied to solve the proposed problem with three

different distribution distance metrics for robustness. We

also conduct simulations to verify the effectiveness of the

proposed scheme and discuss the impact of the of several

key parameters in the proposed revenue maximization

problem.

The rest of paper is organized as follows. In Section III, we

describe the overview of our system, discuss the threat model

and present differential privacy preliminaries. We review the

related work on differential privacy and ICN in Section II. In

Section IV, we introduce the dBitFlip mechanism to protect

users’ private content preference, give the formulation of the

CP revenue maximization problem, and give a feasible solu-

tion to the problem. In Section V, we evaluate the performance

of our proposed scheme. Finally, we draw conclusions in

Section VI.

II. RELATED WORK

In the ICN, in-network caching is necessary for trans-

forming the traditional host-centric paradigm to a decentral-

ized content-centric architecture. The ICN is being devel-

oped to provide resilient and robust network infrastructure

services [19]. In [20], the authors proposed an in-network

caching scheme called ProbCache that can estimate the con-

tent delivery path capacity according to the path length in

order to efficiently allocate the resources and reduce the
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traffic redundancy. The authors in [21] integrated the ICN

with wireless network virtualization architecture over the fifth-

generation (5G) mobile wireless networks. They formulated

a joint optimization problem with the gain of virtualiza-

tion and caching in ICN in order to efficiently allocation

virtual resource and at the same time reduce the backhaul

traffic. In [7], the authors integrated the ICN virtualization

with device-to-device (D2D) communications based on the

software-defined networking (SDN) technology, which can

dynamically allocate the virtual resources efficiently. Then,

they formulated the utility maximization problem among all

the mobile virtual network operators (MVNOs) with the con-

sideration of imperfect channel estimation and measurement.

Compared to this work, in our paper, we construct the content

popularity distribution with historical data instead of assuming

that the distribution follows the Zipf distribution. We leverage

the data-driven optimization [22], [23] and give a feasible

solution to our formulated revenue maximization problem

under the characterization of uncertainty, which is brought by

differentially private noise and the limited number of historical

data.

Differential privacy was first introduced in [24] and has

emerged as strong standard privacy guarantee to measure pri-

vacy disclosure. Basically, it is used to protect data providers’

privacy when the statistical information of a database is pub-

lishing. However, the data providers will suffer from privacy

leakage if the database is dishonest. Therefore, the local

privacy model is utilized in differential privacy to provide local

privacy guarantee to the data providers before the database

aggregates the private data. In recent years, LDP has received

a number of attentions [25]. For instance, in [26], the authors

proposed RAPPOR to protect individual user’s privacy, while

it is able to estimate the occurring frequencies of a candi-

date set. The authors further extend this work in [27] that

they proposed a mechanism to infer the association between

multiple locally differentially private variables without the

knowledge of a candidate set. However, when the dimension is

higher, the error will increase and the computation complexity

will exponentially grow. In [28], the authors proposed two

optimized LDP protocol which can provide better utility with

optimal variance value. Bassily al. [29] developed two locally

differentially private heavy hitter mechanisms which could

reach optimal or almost optimal error, and significantly reduce

the cost and complexity of users’ side when injecting the local

noise.

III. NETWORK MODEL AND PRELIMINARIES

A. System Description

In our system, as shown in Figure 1, we assume the

content provider (CP), in the information-centric network

(ICN), collects users’ content preferences information with

local differential noise, forecasts the content popularity by

data-driven methodology, leases several storage for caching

of the access points (APs) and offloads the popular content in

advance into the cache. Additionally, the users apply the local

differential privacy (LDP) protocols to add noise individually

on their content preferences without a trusted third party and

return the modified information to the CP.

Content Provider

Cache

Cache

Cache

Cache Cache

Access Points

Fig. 1. System description.

In our scheme, we assume the set of users is U =
{1, · · · , u, · · · , U}, the content is represented as f with size

sf and the real content preference of each user is ru that is

selected from the set F = {1, · · · , f, · · · , F}. There are sev-

eral cache-enabled APs from a set M = {1, · · · ,m, · · · ,M}
cooperating with the CP to provide high QoS. The available

storage of each AP is cm unit, which can be leased by the CP

for caching popular content. The price to lease the available

storage of each AP is km. With the LDP mechanism, the

users add noise locally to their true content preference ru,

which is shown in IV-A in detail. The CP constructs the noisy

reference content popularity probability P0 based on noisy

content preference results and predicts the true popularity

distribution by data-driven approach. With this distribution,

the CP can decide to cache the entire content or a portion

of each content and determine how many APs to be leased.

Because of the uncertainty of noisy reference distribution,

the revenue maximization problem is formulated, which is

illustrated in IV-C. Moreover, the Benders’ decomposition is

deployed to solve the proposed maximization problem.

B. Threat Model

During the ICN resource allocation, the CP is trying to lease

the storage of AP to cache the popular content according to

the users’ content preference in order to relieve congestion

problem and reduce the backhaul load. Our target is to protect

users’ private content preference during the data aggregation

since it may contain users’ sensitive information which could

be sold by adversary for commercial uses. Nonetheless, the

privacy leakage after the aggregation process is out of our

scope. We assume the attackers want to learn users’ private

content preference information and either the ICN server, a

participatory user or the third party identity can be considered

as attackers. However, data pollution attacks, that malicious

users would modify their preference and try to affect the

overall content popularity results, are beyond the scope of this

paper. We suppose that the attackers are able to obtain side

information or arbitrary background knowledge of users. Our
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objective is to hide the users’ true preferred content despite

the prior knowledge of adversaries.

C. Local Differential Privacy Preliminaries

Differential privacy [24] is used to obtain the statisti-

cal information of databases without disclosure of the data

providers’ privacy. Intuitively, two databases, which have only

one element different from each other, are called neighbor

databases. With a randomization algorithm A and the two

neighbor databases as input, the outputs of the algorithm

A are not distinguishable. The formal differential privacy

requirements for the algorithm A are shown as follows.

Definition 1: A randomized algorithm A satisfies ǫ-
differential privacy (ǫ-DP), when given two neighbor

databases D and D′ and a privacy budget ǫ ≥ 0, in the

following condition:

Pr[A(D) = z]

Pr[A(D′) = z]
≤ eǫ,

where z is the query output.

However, there must exists a trustworthy database or data

aggregator when applying the centralized differential privacy.

In our work, we assume the service database is honest-

but-curious, which means the privacy leakage possibility

increases. Therefore, local privacy setting is suitable in the

situation that the data providers trust no one except them-

selves. The Warner’s random response model [30] is one of

the oldest local privacy model applied in survey sampling. In

the Warner’s model, if there are two answers of one question,

the data provider will reply truly with probability of p and

falsely with probability of 1 − p. Combining local privacy

and differential privacy, the definition of local differential

privacy is shown as follows, which is similar to the centralized

differential privacy.

Definition 2: With a privacy confidence parameter ǫ ≥ 0,

a randomized algorithm A satisfies ǫ-local differential privacy

(ǫ-LDP), when given two inputs x and x′ [31]:

Pr[A(x) = z]

Pr[A(x′) = z]
≤ eǫ,

where z is the secure view of the input.

Therefore, with a specific output z from the randomized

algorithm A, it is not able to determine or can infer with

negligible probability whether the input is x or x′, since the

data providers only return the obfuscated data A(x) to the data

aggregator. Additionally, the privacy confidence parameter ǫ
controls the privacy preservation level, which means there is

more possibility to distinguish the outputs of the randomized

algorithm A with two different inputs with a higher value of

ǫ. In other words, smaller ǫ means higher privacy preservation

level.

IV. DATA-DRIVEN CACHING REVENUE MAXIMIZATION

WITH USERS’ LOCAL DIFFERENTIAL PRIVACY

A. Protecting Private Content Preference with Local Differ-

ential Privacy

In information-centric networking (ICN), the content

provider (CP) targets to offer satisfactory service to users.

1

0
t

F(t)

G(t)

 W(F,G)

(a) Wasserstein metrics (one-
dimensional case).

1

0
t

F(t)

G(t)

U(F,G)

(b) Uniform metric (one-
dimensional case).

Fig. 2. Comparison of two metrics.

Therefore, the CP leases storage of several cache-enabled

access points (APs) on the edge to cache popular content.

Consequently, the CP first aggregates the users’ content pref-

erence ru from each user u and predict the content popularity.

However, the users’ content preference may contain private

sensitive information as discussed in Section I. Thus, in this

work, we employ the dBitFlip mechanism introduced in [32]

to protect users’ content preference.

In dBitFlip mechanism, each user u first randomly se-

lects d files without replacement from the file set F , de-

noted as {j1, j2, · · · , jd}. Each user has his/her own content

preference ru ∈ F . When the CP aggregates the content

preference from users, each user will send a vector bu =
[(bu,j1 , j1), (bu,j2 , j2), · · · , (bu,jd , jd)] back to the CP, where

bu,j1,2,··· ,d are binary numbers. In order to protect users’

privacy, the vector is supposed to be constructed according

to the following equations,

∀a∈[d]Pr[bu,ja = 1] =











eǫ/2

eǫ/2+1
,when ru = ja,

1
eǫ/2+1

,when ru 6= ja.

(1)

According to the public coins model introduced in [33], the

obfuscated output vector of each user is compressed into d bits

(i.e., bu = [bu,j1 , bu,j2 , · · · , bu,jd ]) and the index ja can be

generated by public coins. The reason is that the randomness

of the index j is independent from the input and the privacy of

the dBitFlip randomization holds differential privacy despite

the index j. The randomness to choose the index j can be

sent by the CP with public coins model and the CP receives j
via other channels. Then, the obfuscated vector of each user

can be represented into d bits.

According to the aggregated vectors bu from users, the CP

can estimate the content popularity histogram for all the files

in the file set F , which is shown as follows,

ĥ(v) =
F

Ud

∑

bu,v is received

bu,v · (e
ǫ/2 + 1)− 1

eǫ/2 − 1
. (2)

For each file v ∈ F , the CP first counts how many reported

obfuscated vectors from users contain the element bu,v equal

to 1. The correction of the influence of the randomization is

implemented. Intuitively, for each file v, there are approxi-

mately Ud/F users reported bu,v in the obfuscated content

preference vector.

Lemma 1: The dBitFlip mechanism satisfies ǫ-LDP. After

the CP aggregates the d bits obfuscated content preference
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vector bu from each user u, the CP can estimate the content

popularity ĥt. With probability at least 1 − δ, the following

condition holds [32],

max
v∈F

|h(v)− ĥ(v)| ≤

√

5F

Ud
·

√

log(
6F

δ
) ·

eǫ/2 + 1

eǫ/2 − 1
. (3)

With the dBitFlip mechanism, we can get the error bound of

the content popularity histogram as (3).

B. Data-Driven Analysis of Content Popularity

Most works in the ICN assume that the distribution of

content popularity is known as Zipf distribution. However,

practically, it may not accurately capture the statistical features

in various geographical locations in ICN since the true content

popularity distribution is unknown. Instead, only historical

data or real content preferences of users can be obtained by

the CP to construct the reference distribution of content pop-

ularity. Therefore, in our work, we employ data-driven risk-

averse stochastic optimization approach (RA-SP) to making a

decision to lease cache-enabled APs under the uncertainty of

predicting the content popularity.

1) Reference Distribution Construction: We assume that

the CP has U users in total and each user has his/her own

content preference. In order to protect users’ content prefer-

ence, each user applies dBitFlip mechanism to obfuscate their

true content preference. The overall private content popularity

distribution can be represented by Pd. Moreover, since the

dBitFlip mechanism brings uncertainty, the content preference

distribution Pd is not the true ambiguous content preference

distribution. Therefore, we denote the true ambiguous content

preference distribution as P. According to the description

in Section IV-A, the relationship between P and Pd can

be calculated based on the knowledge of (3). The content

popularity reference distribution P0 is constructed based on

the content preference of selected Q users. Then, the selected

users apply dBitFlip mechanism to obfuscate their true content

preference and return the obfuscated content prefernce vector

to the CP. Hence, the CP can aggregate the obfuscated content

preference vectors and construct the reference distribution P0.

2) Convergence Rate Analysis: After constructing the ref-

erence distribution P0, we are going to find the relationship

between the reference distributions P0, overall private content

popularity distribution Pd and the true distribution P. We use

distance between the distributions to quantify such relation-

ship. We apply a distance measurement proposed in [34] to

express the distance between two distributions. We also define

the distance between P0 and P is d(P0,Pd) constructed on the

confident set D. We represent this distance and the confident

set D as follows:

D = {P : dζ(P0,Pd) ≤ θ}, (4)

dζ(P0,Pd) = sup
h∈H

∣

∣

∣

∣

∫

Ω

hdP0 −

∫

Ω

hdPd

∣

∣

∣

∣

, (5)

where the distance under ζ-structure probability metric is

denoted by dζ(·, ·), the tolerance is denoted by θ, and H
expresses the bounded measurable functions on Ω, which is

the sample space of a random variable.

In this paper, three ζ-probability metrics are employed

to calculate the distribution distance, which are derived as

follows.

• Kantorovich metric (K-metric): For K-metric

dK(P0,Pd), we have H = {h : ||h||L ≤ 1}, where

||h||L := sup{h(x)−h(y)/ρ(x, y) : x 6= y in Ω}, where

ρ(x, y) is the distance between two variables x and

y. According to the Kantorovich-Rubinstein theorem,

the K-metric and the Wasserstein metric are equivalent.

Especially, with Ω = R, let dw denote the Wasserstein

metric, then

dw(P0,Pd) =

∫ +∞

−∞

|F (x)−G(x)|dx, (6)

where F and G are the cumulative distribution function

of P0 and Pd respectively, which is demonstrated in

Figure 2(a).

• Fortet-Mourier metric (FM-metric): For FM-metric

dFM (P0,Pd), we have H = {h : ||h||C ≤ 1}, where

||h||C := sup{h(x) − h(y)/c(x, y) : x 6= y in Ω}
and c(x, y) = ρ(x, y)max{1, ρ(x, a)p−1, ρ(y, a)p−1} for

some p ≥ 1 and any a ∈ Ω. Given p = 1, the FM-metric

and the K-metric are equivalent.

• Uniform metric (U-metric): For U-metric dU (P0,Pd),
we have H = {I(−∞,t], t ∈ Rn}. The U-metric can be

represented as dU (P0,Pd) = supt |P0(x ≤ t),Pd(x ≤
t)|, which is shown in Figure 2(b). Similarly, F and G
are the cumulative distribution function of P0 and Pd

respectively.

The relationship among metrics is represented as for any

two probability distributions Q and R, dFM (R,Q) ≤ Λ ·
dK(R,Q), where Λ = max{1,∅p−1} for p ≥ 1 and ∅ is the

diameter of Ω [35]. In general, several properties hold in the ζ-

structure metrics discussed above: 1) dζ(R,Q) = 0 if and only

if R = Q; 2) ζ-structure metric satisfies the symmetric prop-

erty that dζ(R,Q) = dζ(Q,R); 3) ζ-structure metric satisfies

the triangle inequality that dζ(R,Q) ≤ dζ(R,O) + dζ(O,Q)
for any probability distribution O.

Proposition 1: For a general dimension case (i.e., n ≥ 1),

Pr(dK(P0,P) ≤ θ) ≥ 1− exp(−
(θ − α(∅− 1))2

2∅2
Q), (7)

where α =
√

5F
Ud ·

√

log( 6Fδ ) · eǫ/2+1
eǫ/2−1

.

Proof: First, we define a set B as follows,

B := {µ ∈ P(Ω) : dK(µ,P) ≥ θ}, (8)

where P(Ω) is the set of all probability measures defined

on Ω. Let C(Ω) be the set of bounded continuous function

φ : Ω → R. Recall that the number of selected users is

Q, the ambiguous distribution of users’ content preferences

distribution is P and the constructed reference distribution

of the content preferences is P0. Therefore, following the
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definitions, for each φ ∈ C(Ω), we have

Pr(dK(P0,P) ≥ θ) = Pr(P0 ∈ B) (9)

≤ Pr(

∫

Ω

φdP0 ≥ inf
µ∈B

∫

Ω

φdµ) (10)

≤ exp (−Q inf
µ∈B

∫

Ω

φdµ)E(eQ
∫
Ω
φdP0) (11)

= exp (−Q inf
µ∈B

{

∫

Ω

φdµ−
1

Q
logE(eQ

∫
Ω
φdP0)}) (12)

= exp (−Q inf
µ∈B

{

∫

Ω

φdµ− log

∫

Ω

eφdPd}). (13)

In the above derivation, because of (8), we can get (9). The

inequality (10) holds because P0 ∈ B, µ ∈ B and µ satis-

fies the minimum of
∫

Ω
φdµ. According to the Chebyshev’s

exponential inequality that Pr(X ≥ a) = E[X]
a , we can get

the inequality (11). Based on the property of exponentiation,

the equation (12) holds. As the historical data samples are

independent from each other and drawn from the ambiguous

distribution of overall private content preference distribution

Pd, we can obtain the equality (13).

Next, we define ∆(µ) := supφ∈C(Ω)

∫

Ω
φdµ−log

∫

Ω
eφdPd.

There should exist a series φn such that limn→∞

∫

Ω
φdµ −

log
∫

Ω
eφdPd = ∆(µ), because of the definition of C(Ω).

Hence, given a small positive number θ′ > 0, a constant

number n0 is supposed to exist so that ∆(µ) − (
∫

Ω
φndµ −

log
∫

Ω
eφndPd) ≤ θ′ for any n ≥ n0. Now, we can substitute

φn for φ in equation (13) as follows,

Pr(P0 ∈ B)

≤ exp

(

−U inf
µ∈B

{
∫

Ω

φndµ− log

∫

Ω

eφndPd

})

(14)

≤ exp

(

−U inf
µ∈B

{∆(µ)− θ′}

)

(15)

As proved in [36], we have

∆(µ) = dKL (µ,Pd) . (16)

Based on the defination of Kantorovich metric and Kullback-

Leibler divergence, we have

dK (µ,Pd) ≤ ∅
√

2dKL (µ,Pd), ∀µ ∈ P(Ω), (17)

where ∅ is the diameter of Ω. Recall the definition of B
and µ ∈ B, we have dK (µ,P) ≥ θ. According to the

triangle inequality property of the ζ-structure metric that we

introduced before, we have

θ ≤ dK(µ,P) ≤ dK(µ,Pd) + dK(Pd,P). (18)

Consequently, we can obtain

dK(µ,Pd) ≥ θ − dK(P,Pd). (19)

Then, we can combine (17) and (19),

dKL (µ,P) ≥
(θ − dK(P,Pd))

2

2∅2
. (20)

In Subsection IV-A, we’ve introduced the dBitFlip mechanism

and given an error bound of the histogram as (3). Now, we

set the right term of the inequality (3) as α (i.e., α =
√

5F
Ud ·

√

log( 6Fδ ) · eǫ/2+1
eǫ/2−1

). Then, we can derive that dK(Pd,P0) ≤

α(∅− 1). Here, F equals to the diameter of sample space ∅.

Combining (15), (16), (20), we have

Pr(P0 ∈ B) ≤ exp

(

−Q

(

(θ − α(∅− 1))2

2∅2
− θ′

))

. (21)

We can define θ′ = λ/Q, where λ is an arbitrary small positive

number. Then, we can obtain

Pr (dK (P0,P) ≥ θ) = Pr (P0 ∈ B)

≤ exp

(

−Q
(θ − α(∅− 1))2

2∅2
+ λ

)

. (22)

Because λ is arbitrarily small that can be ignored, we have

Pr(dK(P0,P ≤ θ)) ≥ 1− exp

(

−
(θ − α(∅− 1))2

2∅2
Q

)

.

(23)

From the definition of metrics and relationships between

metrics under ζ-structure, we can derive the convergence prop-

erty and convergence rate for the other metrics accordingly.

For the uniform metric, the convergence rate can be derived

from the Dvoretzky-Kiefer-Wolfowitz inequality [37].

Proposition 2: The convergence rate of the uniform metric

for a single dimension case is (i.e., n = 1),

P (dU (P0,P) ≤ θ) ≥ 1− 2e−2Q(θ−α)2 , (24)

From the relation between the Fortet-Mourier metric and

Kantorovich metric, we can derive the convergence rate of

Fortet-Mourier metric as follows.

Proposition 3: For a general dimension (i.e., n ≥ 1), we

have

Pr(dFM (P0,P) ≤ θ) ≥ 1− exp
(

−
(θ − α(∅− 1))2Q

2∅2Λ2

)

,

(25)

where Λ = max{1,∅p−1}.

We assume the confidence level is denoted as η. Based

on the derived inequalities (7), (24) and (25), we can easily

calculate the relationships between the tolerance level θ and

the confidence level η. For instance, in the Kantorovich metric,

we can set the confidence level η = 1−exp(− (θ−α(∅−1))2

2∅2 Q)
and we can further derive

θ = ∅

√

2log(1/(1− η))

Q
+ α(∅− 1), (26)

where the first term affected by the amount of historical

data and the confidence level, and the second term affected

by the differential privacy budget ǫ. It is obvious that with

higher amount of historical data, θ is smaller and with higher

differential privacy level ǫ, α is smaller and θ is smaller.

C. Caching Revenue Maximization Problem with Local Pri-

vacy Preservation

As we describe before, the CP collects user’s noisy content

preferences with LDP and aggregates the frequency estimation

of each content. Consequently, the CP is able to get the
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noisy content preference of a number of selected users Q. In

our work, according to the noisy content popularity, the CP

can construct the reference distribution P0 based on content

preference of the selected number of users. We assume there

are F candidate files in the set F = {1, · · · , f, · · · , F} that

are selected to store in the cache-enabled APs. The CP can

decide whether to store a portion βf of each file f in the

cache, where 0 ≤ βf ≤ 1. We assume there are M APs

available and each AP has the available capacity cm. The

binary parameter ym is used to represent if an AP is leased by

the CP with the price km. We denote the size of each file as

sf . We represent the profit per unit size of a file stored in AP

as φ(a) and the profit per unit size of a file not stored in AP

as φ(c). We assume that the random variable ξ has F possible

realizations {ξ1, ξ2, . . . , ξF } with the probability pf for each

realization. Here, pf is the content popularity of the file f .

The s(ξf ) can be represented the file size of each realization.

In addition, there are a total number of U users served by

the CP. In order to maximize revenue, the CP employs data-

driven method to predict the real content popularity, decides

how much of a content file stored in APs, and selects cache-

enabled APs from a given group. Because of contribution of

the APs, the bachhual load is reduced. Therefore, the revenue

maximization problem for CP can be formulated as follows:

max
y

M
∑

m=1

−kmym+

min
P

EP max
βf

[βfs(ξf )φ
(a)U + (1− βf )s(ξf )φ

(c)U ], (27)

s.t.:

F
∑

f=1

βfsf ≤
M
∑

m=1

cmym, (27a)

ym ∈ {0, 1},∀m, (27b)

0 ≤ βf ≤ 1,∀f, (27c)

P ∈ D. (27d)

In the formulation, ym and βf represent the first-stage and

second-stage decision variables. The constraint (27a) indicates

that the total amount of cached files should not exceed the

capacity cm of all the leased cache, (27b) indicates whether

the cache m is leased by the CP, and (27c) shows the

portion of each file cached in APs. In (27), we would like

to maximize the overall revenue. Since we add noise in the

processed energy profile, the distribution of real demand is

ambiguous. Therefore, we construct the confident set D, and

let P ∈ D so as to maximize the total revenue under the

worst-case distribution realization in D. In order to consider

the worst-case scenario that can happen during the caching, we

minimize the revenue based on the distribution P. Therefore,

the proposed problem is a risk-averse two-stage problem.

D. Solution to Caching Optimization under Distribution Un-

certainty

We utilize the Benders’ decomposition algorithms [38] to

solve the proposed optimization problem. The sample space

of the random variable ξ is Ω = {ξ1, ξ2, · · · , ξF }. For

each scenario ξf , the second-stage maximization problem is

independent with ξf . The optimization problem (27) can be

reformulated as:

max
y

M
∑

m=1

−kmym+

min
p

max
α

F
∑

f=1

pf [βfs(ξf )φ
(a)U + (1− βf )s(ξf )φ

(c)U ],

(28)

s.t. (27a)− (27d),

We need to first dualize the second-stage maximization prob-

lem in order to solve (28). We replace (1 − βf ) with the

variable ρf and add another two constraints 0 ≤ ρf ≤
1, ρf = 1 − βf to the original second-stage problem. Hence,

the reformulated second-stage maximization problem is shown

as,

max
α

F
∑

f=1

pf [βfs(ξf )φ
(a)U + ρfs(ξf )φ

(c)U ], (29)

s.t. (27a), (27c),

0 ≤ ρf ≤ 1, (29a)

ρf = 1− βf . (29b)

Then, the dual problem is shown as follows,

min
∀w

M
∑

m=1

cmymw1 +
(

F
∑

f=1

−wf
2 + wf

3 + wf
4 + wf

5

)

, (30)

s.t. sfw1 − wf
2 + wf

3 + wf
4 ≥ pfs(ξf )φ

(a)U, ∀f, (30a)

− wf
2 + wf

3 + wf
5 ≥ pfs(ξf )φ

(c)U, ∀f, (30b)

w1, w
f
2 , w

f
3 , w

f
4 , w

f
5 ≥ 0,∀f, (30c)

where all w are dual variables for all constraints of the second-

stage maximization problem. Therefore, we can combine two

minimization problem and obtain the subproblem as follows,

ϕ(y) = min
p,∀w

M
∑

m=1

cmymw1 +
(

F
∑

f=1

−wf
2 + wf

3 + wf
4 + wf

5

)

,

(31)

s.t. (30a), (30b), (30c),
F
∑

f=1

pf = 1, (31a)

P ∈ D. (31b)

According to the discussions in Section IV-B, the constraint

(31b) can be reformulated as,

max
hf

F
∑

f=1

hfp
0
f −

F
∑

f=1

hfpf ≤ θ, ∀hf : ||h||ζ ≤ 1, (32)

where |h||ζ is defined according to different metrics, p0f is

the probability based on the reference distribution P0, and

θ is the tolerance level. For the Kantorovich metric, |hi −
hj | ≤ ρ(ξi, ξj). For the Fortet-Mourier metric, |hi − hj | ≤
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ρ(i, j)max{1, ρ(ξi, a)p−1, ρ(ξj , a)p−1}. The constraint (32)

can be summarized as
∑F

i=1 aijhi ≤ bj , j = 1, · · · , F . We

can reformulate the constraint as the following problem:

max
hi

F
∑

i=1

hip
0
i −

F
∑

i=1

hipi, (33)

s.t.

F
∑

i=1

aijhi ≤ bj , j = 1, · · · , F.

The dual problem of (33) can be formulated as:

min
u

F
∑

j=1

bjuj , (34)

s.t.

F
∑

j=1

aijuj ≥ p0i − pi, i = 1, · · · , F,

where u is the dual variable. Therefore, for the Kantorovich

metric and Fortet-Mourier metric, the constraint (31b) can be

replaced with
F
∑

j=1

bjuj ≤ θ and
F
∑

j=1

aijuj ≥ p0i − pi, i =

1, · · · , F . For the Uniform metric, the constraint (31b) can be

reformulated as

∣

∣

∣

∑j
f=1

(

p0f − pf
)

∣

∣

∣
≤ θ, j = 1, · · · , F .

We denote σ as the second-stage total revenue and formu-

late the master problem. Then, it can be solved by iteratively

generating feasibility cut and optimality cut. The master

problem can be represented as follows,

max
y

M
∑

m=1

−kmym + σ (35)

s.t. Feasibility cut, Optimality cut

1) Feasibility Cuts: The L-shaped method is employed to

generate the feasibility cut. We need to check whether the

value of the first-stage variable y is feasible for the constraint

(27a), (27c), (29a), and (29b). Hence, we can formulate the

feasibility check problem as follows,

min
κ,β,ρ

κ1 +

F
∑

f=1

5
∑

i=2

κf
i , (36)

s.t. −

F
∑

f=1

βfsf + κ1 ≥ −

M
∑

m=1

cmym,

βf + ρf + κf
2 ≥ 1,

− βf − ρf + κf
3 ≥ −1

− βf + κf
4 ≥ −1,

− ρf + κf
5 ≥ −1,

ρf , βf ≥ 0, κ1, κ
f
i ≥ 0, i = 2, . . . , 5,∀f.

The dual problem of (36) can be represented as follows,

υ(y) = max
∀ŵ

−

M
∑

m=1

cmymŵ1 +
(

F
∑

f=1

ŵf
2 − ŵf

3 − ŵf
4 − ŵf

5

)

,

(37)

s.t. − sf ŵ1 + ŵf
2 − ŵf

3 − ŵf
4 ≤ 0,∀f,

ŵf
2 − ŵf

3 − ŵf
5 ≤ 0,∀f,

ŵ1, ŵ
f
2 , ŵ

f
3 , ŵ

f
4 , ŵ

f
5 ∈ [0, 1],∀f,

where ŵ1, ŵ
f
2 , ŵ

f
3 , ŵ

f
4 ,and ŵf

5 are the dual variables for the

constraints of the minimization problem (36). After solving

this dual problem (37), if υ(y) = 0, we can confirm that the

first-stage solution is feasible. If υ(y) > 0, we need to add

the following feasibility cut to the master problem,

−
M
∑

m=1

cmymŵ1 +
(

F
∑

f=1

ŵf
2 − ŵf

3 − ŵf
4 − ŵf

5

)

≤ 0. (38)

2) Optimality Cuts: After verifying the first-stage variable

y is feasible, we need to check if the variables y and σ of the

master problem are optimal. Therefore, we apply the value of

y to the subproblem and solve ϕ(y). If ϕ(y)−σ ≥ 0, we can

claim that the value of y is the optimal solution. Otherwise,

we need to add an optimality cut to the master problem as

follow,

M
∑

m=1

cmymŵ1 +
(

F
∑

f=1

−ŵf
2 + ŵf

3 + ŵf
4 + ŵf

5

)

≥ σ. (39)

The detailed algorithm for the solution of our propose opti-

mization problem is summarized in Algorithm 1.

Algorithm 1 Algorithm for Solution to Caching Revenue

Maximization Problem

1: Input: The number of selected users’ data Q, the refer-

ence distribution of content popularity P0, the confidence

level η, the number of candidate content files F , the

differentially private level ǫ, the value of d in dBitFlip

mechanism

2: Output: Objective value of the problem (27).

3: Calculate the error bound α of the dBitFlip mechanism

and the tolerance level θ based on three different ζ-

structure metrics

4: Reformulate the problem (27) as a master problem (35)

and a subproblem (31)

5: Solve the master problem and get the value of y and σ
6: Feasibility check by solving υ(y)
7: if υ(y) > 0 then

8: Generate feasibility cut (38)

9: Go to line 5

10: end if

11: Check optimality by solving ϕ(y)
12: if ϕ(y) < σ then

13: Generate optimality cut (39)

14: Go to line 5

15: end if

16: Output solution
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Fig. 3. Expected revenue without users’ privacy preservation.

V. PERFORMANCE EVALUATION

A. Simulation Setup

In our simulations, we use the “Statistics and Social Net-

work of YouTube Videos” dataset [39], which crawled video

information from the Youtube API. We randomly select 100

videos to evaluate the performance of proposed scheme. We

construct the reference distributions with the number of video

views and assume that the CP provides service to 2,000,000

users and take a survey on the content preference from the

selected users. The users implement dBitFlip mechanism with

d = 4 to protect their privacy, and then send the noisy

preference results to the CP. To be specific, the sample users

choose interested videos from 100 video candidates, add noise

and send back to the CP. We assume there are 5 cache-enabled

APs with the capacity [160, 160, 320, 320, 640] and the leasing

cost [2000, 2400, 4800, 4000, 7200]. We set the profit per unit

size of a file stored in AP as φ(a) = 0.001 and the profit

per unit size of a file not stored in AP as φ(c) = 0.0003.

We provide random caching and caching all popular content

as baselines for comparisons. In random caching, videos are

randomly selected to cache in the APs with the constraint

that the total amount of cached videos cannot exceed the

capacity of the APs. In caching all popular content, based

on the reference content popularity distribution P0, the most

popular videos are selected to be cached into the APs with

the constraint of the limited capacity.

We investigate the impacts of several key parameters when

solving the revenue maximization problem. The number of

sampled users Q (i.e., the size of historical data) is one

of the key parameters. In the LDP mechanism dBitFlip,

the privacy level ǫ is the significant parameter. To solve

the proposed revenue maximization problem, we apply three

different metrics, Kantorovich metric, Fortet-Mourier metric

and uniform metric to quantify the uncertainty of the content

demand. The confidence level η is an important parameter to

calculate the convergence rate as discussed in Section IV-B.

B. Privacy and performance analysis

1) Effects of the number of sampled users: We first set the

confidence level η to 0.9 and study the impact of the number
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Fig. 4. Expected revenue with different confidence levels.

of aggregated users’ data on the performance. We set the

number of aggregated user’s data from 1000 to 500,000, which

is sampled based on the pre-defined true content popularity

distribution. We conduct 10 independent runs of the proposed

scheme and two baselines, and show the average revenue

values in Figure 3, which demonstrates the performance of

the expected revenues under the three introduced metrics,

Kantorovich metric (K metric), Fortet-Mourier metric (FM

metric) and uniform metric (U metric). It is shown that under

all of the three metrics, the expected revenues are higher with

a larger number of data. As discussed in Section IV-B, with

a larger number of aggregated data Q, the tolerance level

θ is smaller. When applying the dBitFlip mechanism, the

total revenue is smaller than that without privacy preserving

mechanism. The reason is that the tolerance level with privacy

guarantee is larger than that without privacy preservation. In

other words, with more data and without privacy preservation,

the constructed reference distribution is more accurate and

closer to the ambiguous distribution, which leads to a higher

total revenue.

2) Effects of confidence level: Figure 4 shows the compar-

ison under different confidence levels with the three metrics

and the dBitFlip mechanism is not applied. Here, we set the

number of sampled users as 500,000, and test different confi-

dence levels between 0.7 and 0.99, respectively. We can notice

that, with higher confidence level, the expected revenue of the

CP is lower. A higher confidence level means it is guaranteed

that the distance between the reference distribution and the

ambiguous true distribution is smaller than the tolerance level

θ with a very high probability. Since the tolerance level θ
increases with a higher confidence level, the distance between

the reference distribution and the ambiguous true distribution

becomes larger. Therefore, the CP’s total revenue degrades

with a higher confidence level.

3) Effects of differential privacy budget: In Figure 5, we

study the impact of the differential privacy levels ǫ under

the three metrics. Here, we set the confidence level as 0.9,

and select three different ǫ values, i.e., 2, 1, 0.5, respectively.

A higher ǫ value means a lower privacy preservation level.

As we conduct 10 independent runs on each simulation, the

curves in Figure 5 show the mean total revenue values. For
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(a) Kantorovich metric.
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(b) Fortet-Mourier metric.
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Fig. 5. Performance comparison under different local differential privacy levels and different probability metrics.

the random baseline, the content is randomly cached in the

APs with the constraint of limited capacity. Since this baseline

is independent with any historical data, the performance is

worst. In the caching all popular content baseline, the content

is cached in the APs based on the content popularity, which

is constructed with different number of historical data. We

can find that without dBitFlip mechanism, the performances

of all metrics are better than the popular baseline. With a

larger ǫ value, which means the privacy level is lower, the

total revenue of the proposed private scheme is larger than the

random baseline. Moreover, we can observe that under the FM

metric, the influence of privacy preservation mechanism on the

total revenue value is smallest, because the privacy term in the

equation of tolerance level has minor effects on the value of

θ. Under all metrics, the total revenue of CP degrades with

lower ǫ value, which means higher privacy level. Based on

the relationship between θ, η and ǫ, we can find that with a

higher ǫ value, the tolerance level θ decreases. Recall that with

a lower θ level, the confidence set becomes smaller. Hence,

it will lead to higher total revenue of the CP.

VI. CONCLUSION

In our work, we propose a scheme to predict the content

popularity based on selected users’ locally differentially pri-

vate content preference data in information-centric networks,

and formulate a revenue maximization problem for the CP. Be-

cause of the uncertainty of the content popularity distribution

brought by the limited historical data and the LDP mechanism,

data-driven methodology is employed to characterize such

uncertainty based on the collected noisy content preference

data. In addition, we develop an algorithm to feasibly solve

the proposed problem. We conduct simulations to show the

effectiveness of the proposed scheme and illustrate the trade-

off between privacy and utility.
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